⑴ 向量的坐标怎么求
向量的坐标运算公式:a+b=(x+m,y+n)。我的文件助手15:35:00
向量最初被应用于物理学.很多物理量如力速度位移以及电场强向量度磁感应强度等都是向量。大约公元前350年前,古希腊着名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用着名的平行四边形法则来得到。“向量”一词来自力学解析几何中的有向线段。最先使用有向线段表示向量的是英国大科学家牛顿。
向量的坐标表示这个向量的有向线段的终点坐标减去始点的坐标。在平面直角坐标系中,分别取x轴和y轴上的基地向量i、j;作一向量a,有且只有一对实数(x,y)是a=xi+yj,把这对实数(x,y)叫做向量a的坐标。
向量的数量积的性质
(1)a·a=∣a∣²≥0
(2)a·b=b·a
(3)k(ab)=(ka)b=a(kb)
(4)a·(b+c)=a·b+a·c
(5)a·b=0<=>a⊥b
(6)a=kb<=>a//b
(7)e1·e2=|e1||e2|cosθ=cosθ
希望我的回答对你有所帮助!
⑵ 向量坐标运算公式总结是什么
两个向量a = [a1, a2,…, an]和b = [b1, b2,…, bn]的点积定义为a·b=a1b1+a2b2+……+anbn。
在一个向量空间V中,定义为V*V 的正定对称双线性形式函数即是V的数量积,而添加有一个数量积的向量空间即是内积空间,点积适用于交换律、结合律、分配律。
内积就是: ab=丨a丨丨b丨cosα (注意:内积没有方向,叫做点乘)。
外积就是: a×b=丨a丨丨b丨sinα (注意:外积是有方向的。)。
混合积具有下列性质:
三个不共面向量a、b、c的混合积的绝对值等于以a、b、c为棱的平行六面体的体积V,并且当a、b、c构成右手系时混合积是正数;当a、b、c构成左手系时,混合积是负数,即(abc)=εV(当a、b、c构成右手系时ε=1;当a、b、c构成左手系时ε=-1)。
证明
为了更好地推导,加入三个轴对齐的单位向量i,j,k。
i,j,k满足以下特点:
i=jxk;j=kxi;k=ixj。
kxj=–i;ixk=–j;jxi=–k。
ixi=jxj=kxk=0。(0是指0向量)
由此可知,i,j,k是三个相互垂直的向量。它们刚好可以构成一个坐标系。
这三个向量的特例就是i=(1,0,0)j=(0,1,0)k=(0,0,1)。
⑶ 向量ab的坐标运算公式
向量ab的坐标运算公式是AB=(x2-x1,y2-y1),向量可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。
在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。
与几何向量相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。
⑷ 向量坐标运算公式总结是什么
若向量a=(x,y) 向量b=(m,n)。
1)a·b=xm+yn。
2)a+b=(x+m,y+n)。
简介。
几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。
不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。
⑸ 向量的坐标表示及其运算的公式
坐标表示:
在直角坐标系内,我们分别取与x轴、y轴方向相同的两个单位向量i、j作为基底。任作一个向量a,由平面向量基本定理可知,有且只有一对实数x、y,使得:
(5)向量坐标计算方法扩展阅读:
给定空间三向量a、b、c,向量a、b的向量积a×b,再和向量c作数量积(a×b)·c,所得的数叫做三向量a、b、c的混合积,记作(a,b,c)或(abc),即(abc)=(a,b,c)=(a×b)·c
混合积具有下列性质:
1、三个不共面向量a、b、c的混合积的绝对值等于以a、b、c为棱的平行六面体的体积V,并且当a、b、c构成右手系时混合积是正数;当a、b、c构成左手系时,混合积是负数,即(abc)=εV(当a、b、c构成右手系时ε=1;当a、b、c构成左手系时ε=-1)
2、上条性质的推论:三向量a、b、c共面的充要条件是(abc)=0
3、(abc) = (bca) = (cab) = - (bac) = - (cba) = - (acb)
⑹ 向量的坐标怎么求
设向量为r
基为{a1,a2,...an}
令r=x1a1+...+xnan
用原坐标表示得到n个n元线性方程组
解得(x1,..xn)就是在这组基下的坐标。
或:
待定系数法
设e1,e2为基向量,向量m=pe1+qe2
两边展开建立关于p,q的方程组,解方程组求出p与q
例如:e1=(1,2),e2=(-2,1),m=(3,3)
设(3,3)=p(1,2)+q(-2,1)=(p-2q,2p+q)
所以p-2q=3且2p+q=3,解出p,q即可。
(6)向量坐标计算方法扩展阅读:
(1)确定所求问题含待定系数的一般解析式;
(2)根据恒等条件,列出一组含待定系数的方程;
(3)解方程或消去待定系数,从而使问题得到解决。
例如:“已知x2-5=(2-A)·x2+Bx+C,求A,B,C的值.”解答此题,并不困难,只需将右式与左式的多项式中的对应项的系数加以比较后,就可得到A,B,C的值.这里的A,B,C是有待于确定的系数,这种解决问题的方法就是待定系数法。
⑺ 向量坐标运算公式总结是什么
两个向量a = [a1, a2,…, an]和b = [b1, b2,…, bn]的点积定义为a·b=a1b1+a2b2+……+anbn。
在一个向量空间V中,定义为V*V 的正定对称双线性形式函数即是V的数量积,而添加有一个数量积的向量空间即是内积空间,点积适用于交换律、结合律、分配律。
点积有两种定义方式:代数方式和几何方式,通过在欧氏空间中引入笛卡尔坐标系,向量之间的点积既可以由向量坐标的代数运算得出,也可以通过引入两个向量的长度和角度等几何概念来求解。
混合积具有下列性质:
三个不共面向量a、b、c的混合积的绝对值等于以a、b、c为棱的平行六面体的体积V,并且当a、b、c构成右手系时混合积是正数;当a、b、c构成左手系时,混合积是负数,即(abc)=εV(当a、b、c构成右手系时ε=1;当a、b、c构成左手系时ε=-1)。
⑻ 向量坐标的计算公式
合成向量 = √ ( a² + b² )