1. 如何手算开立方根
一、分为整数开平方和小数开平方。
1、整数开平方步骤:
(1)将被开方数从右向左每隔2位用撇号分开;
(2)从左边第一段求得算数平方根的第一位数字;
(3)从第一段减去这个第一位数字的平方,再把被开方数的第二段写下来,作为第一个余数;
(4)把所得的第一位数字乘以20,去除第一个余数,所得的商的整数部分作为试商(如果这个整数部分大于或等于10,就改用9左试商,如果第一个余数小于第一位数字乘以20的积,则得试商0);
(5)把第一位数字的20倍加上试商的和,乘以这个试商,如果所得的积大于余数时,就要把试商减1再试,直到积小于或等于余数为止,这个试商就是算数平方根的第二位数字;
(6)用同样方法继续求算数平方根的其他各位数字。
2、小数部分开平方法:
求小数平方根,也可以用整数开平方的一般方法来计算,但是在用撇号分段的时候有所不同,分段时要从小数点向右每隔2段用撇号分开。
如果小数点后的最后一段只有一位,就填上一个0补成2位,然后用整数部分开平方的步骤计算。
二、
1.根据平方和(立方和)公式手算开平方(开立方)。以往初中教材上必学的手算开平方就是此法,开立方也可类似处理。
2.利用二分法以及不等式两边夹,如求2的平方根
1)1^2<2<2^2
2)(1.4)^2<2<(1.5)^2
......
此法运算量大。
3.利用微分求近似值——由于此法误差不可控,可结合前一方法逐步提高精度,计算量比前一方法小。
4.原始的泰勒展开,计算量大,误差可控。
5.变形的泰勒展开,计算方法里的。
参考链接:数学资源
2. 立方根怎么算
立方根计算公式
3√a
任何数字的立方都是通过乘以三倍数来找到的。例如 求7的立方– 7×7×7 =343
立方体公式是立方求根公式的相反公式。请查看下面的示例:
5的立方 ,= 53 = 5乘以3次 = 125
立方根125 = 3√125 = 5
13 = 1
23 = 8
33 = 27
43 = 64
53 = 125
63 = 216
73 = 343
83 = 512
93 = 729
10 =1000
以上是立方根公式表的全部内容
3. 立方根的公式
立方公式如下:
(3)数字立方根计算方法扩展阅读:
1、性质
(1)在实数范围内,任何实数的立方根只有一个
(2)在实数范围内,负数不能开平方,但可以开立方。
(3)0的立方根是0
(4)立方和开立方运算,互为逆运算。
(5)在复数范围内,任何非0的数都有且仅有3个立方根(一实根,二共轭虚根),它们均匀分布在以原点为圆心,算术根为半径的圆周上,三个立方根对应的点构成正三角形。
(2)在复数范围内,负数既可以开平方,又可以开立方。
2、大小比较
具有大小意义的数字大小比较中:
(1)做这两个数的立方,立方数大者大
(2)作差,两数相减,若差大于0,则被减数大;若差小于0,则减数大;若差等于0,则一样大;
(3)比较被开方数,立方根大者大
4. 立方根简便算法
1、将被开立方数的整数部分从个位起向左每三位分为一组;
2、根据最左边一组,求得立方根的最高位数;
3、用第一组数减去立方根最高位数的立方,在其右边写上第二组数;
4、用求得的最高位数的平方的300倍试除上述余数,得出试商;并把求得的最高位数的平方的300倍与试商的积、求得的最高位数的30倍与试商的平方的积和试商的立方写在竖式左边,观察其和是否大于余数,若大于,就减小试商再试,若不大于,试商就是立方根的第二位数;
5、用同样方法继续进行下去。
立方根定义:如果x³=a,则x叫做a的立方根,记作“³√a”(a称为被开方数)。
立方根的结果有3个(除0以外,且在复数范围内),3个立方根均匀分布在以原点为圆心,算术根为半径的圆周上,三个立方根对应的点构成正三角形。
(4)数字立方根计算方法扩展阅读
相关应用:
1、 已知x-2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.
解析:根据平方根、立方根的定义和已知条件可知x-2=4,2x+y+7=27,从而解出x,y,最后代入x2+y2,求其算术平方根即可.
解:∵x-2的平方根是±2,∴x-2=4,∴x=6.∵2x+y+7的立方根是3,∴2x+y+7=27.把x=6代入解得y=8,∴x2+y2=62+82=100.∴x2+y2的算术平方根为10.
方法总结:本题先根据平方根和立方根的定义,运用方程思想列方程求出x,y的值,再根据算术平方根的定义求出x2+y2的算术平方根。
5. 立方根计算公式是什么
立方根计算公式是x³=a。
如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根;如果x=a,那么x叫做a的立方根。正数的立方根是正数,负数的立方根是负数,0的立方根是0;求一个数的立方根的运算,叫做开立方。
立方根区别联系:
⑴根指数不同:平方根的根指数为2,且可以省略不写;立方根的根指数为3,且不能省略不写。
⑵ 结果不同:平方根的结果除0之外,有两个互为相反的结果;复数范围内,立方根的结果有3个,3个立方根均匀分布在以原点为圆心,算术根为半径的圆周上,三个立方根对应的点构成正三角形。
二者都是与乘方运算互为逆运算。
6. 怎样计算立方根
立方根 :
3√0 = 0 。
3√1 = 1 。
3√2 = 1.25992104989487 。
3√3 = 1.44224957030741 。
3√4 = 1.5874010519682 。
3√6 = 1.81712059283214 。
3√7 = 1.91293118277239 。
3√8 = 2 。
3√9 = 2.0800838230519 。
3√10 = 2.15443469003188 。
3√11 = 2.22398009056932 。
3√12 = 2.28942848510666 。
3√13 = 2.35133468772076 。
3√14 = 2.41014226417523 。
3√15 = 2.46621207433047 。
3√16 = 2.51984209978975 。
3√17 = 2.57128159065824 。
3√18 = 2.6207413942089 。
3√19 = 2.66840164872194 。
3√20 = 2.71441761659491 。
3√21 = 2.75892417638112 。
3√22 = 2.80203933065539 。
3√23 = 2.84386697985157 。
3√24 = 2.88449914061482 。
3√25 = 2.92401773821287 。
3√26 = 2.96249606840737 。
3√27 = 3。
概念
一般地,如果一个数X的立方等于 a,那么这个数X就叫做a的立方根(cube root,也叫做三次方根)。也就是说,如果x3=a,那么x叫做a的立方根。
读作"三次根号a"。其中,a叫做被开方数,3叫做根指数(a可以等于所有数,包括0)。如果被开方数还有指数,那么这个指数(必须是能被3整除的)还可以和三次根号约去。
求一个数a的立方根的运算叫做开立方。
复数范围内,任何数有且只有三个立方根,它们均匀分布在以原点为圆心,算术根为半径的圆周上,三个立方根对应的点构成正三角形。立方根的性质 :⑴复数范围内,任何不是0的数都有3个立方根.⑵0的立方根是0。