导航:首页 > 计算方法 > 斜循环行列式的计算方法

斜循环行列式的计算方法

发布时间:2023-02-22 13:22:53

A. 行列式计算方法

行列式的计算方法:就是右斜的乘积之和减去左斜乘积之和其结果就是要求的结果。也可以利用行列式定义直接计算,利用行列式的七大性质计算,化为三角形行列式;若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。

3、克拉默法则:利用线性方程组的系数行列式求解方程,令系数行列式为D,Di为将等式右侧的值替换到行列式的第i列。

4、齐次线性方程组:在线性方程组等式右侧的常数项全部为0时,该方程组称为齐次线性方程组,否则为非齐次线性方程组。齐次线性方程组一定有零解,但不一定有非零解。当D=0时,有非零解;当D!=0时,方程组无非零解。

B. 行列式计算

1、利用行列式定义直接计算。

2、利用行列式的七大性质计算。

3、化为三角形行列式 :若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。因此化三角形是行列式计算中的一个重要方法。

4、降阶法:按某一行(或一列)展开行列式,这样可以降低一阶,更一般地是用拉普拉斯定理,这样可以降低多阶,为了使运算更加简便,往往是先利用列式的性质化简,使行列式中有较多的零出现,然后再展开。 

(2)斜循环行列式的计算方法扩展阅读:

矩阵行列式的相关性质:

1、行列式A中某行(或列)用同一数k乘,其结果等于kA。

2、行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

3、若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。

4、行列式A中两行(或列)互换,其结果等于-A。 ⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。

C. 行列式的计算方法总结

行列式的计算方法是很多人都不太清楚的一个点,下面我为大家总结整理了一些关于行列式计算方法的相关知识,供大家参考。

行列式计算方法汇总

1.行列式和他的转置行列式相等。2.变换一个行列式的两行(或两列),行列式改变符号即变为之前的相反数。3.如果一个行列式有两行(列)完全相同,那么这个行列式等于零。4.一个行列式中的某一行(列)所有元素的公因子可以提到行列式符号的外面。5.如果一个行列式中有一行(列)的元素全部是零,那么这个行列式等于零。

什么是行列式

行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或|A|。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。

行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在n维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。

D. 计算行列式常用的7种方法

(1)行列式和他的转置行列式相等。

(2)变换一个行列式的两行(或两列),行列式改变符号 即变为之前的相反数。

(3)如果一个行列式有两行(列)完全相同,那么这个行列式等于零。

(4)一个行列式中的某一行(列)所有元素的公因子可以提到行列式符号的外面。

(5)如果一个行列式中有一行(列)的元素全部是零,那么这个行列式等于零。

(6)如果一个行列式有两行(列)的对应元素成比例,那么这个行列式等于零。

(7)把行列式的某一行(列)的元素乘以同一个数后加到另一行(列)的对应元素上,行列式不变。

根据行列式的特点,适当变形(利用行列式的性质——如:提取公因式;互换两行(列);一行乘以适当的数加到另一行(列)去;把所求行列式化成已知的或简单的形式。其中范德蒙行列式就是一种。这种变形法是计算行列式最常用的方法。

(4)斜循环行列式的计算方法扩展阅读:

①行列式A中某行(或列)用同一数k乘,其结果等于kA。

②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。

④行列式A中两行(或列)互换,其结果等于-A。

⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。

E. 行列式的计算方法

简单地说,行列式的主要功能体现在计算机科学中
现在数学课上学习行列式,就是为了让我们理解一些计算原理

我先讲行列式怎么计算吧
二阶行列式(行列式两边的竖线我不会打,看得懂就行):
a b
c d
它的值就等于ad-bc,即对角相乘,左上-右下的那项为正,右上-左下的那项为负
三阶行列式:
a b c
d e f
g h i
它的值等于aei+bfg+cdh-afh-bdi-ceg,你在纸上用线把每一项里的三个字母连起来就知道规律了

计算机就是用行列式解方程组的
比如下面这个方程组:
x+y=3
x-y=1
计算机计算的时候,先计算x,y系数组成的行列式D:
1 1
1 -1
D=-2
然后,用右边两个数(3和1)分别代替x和y的系数得到两个行列式Dx和Dy:
3 1
1 -1
Dx=-4
1 3
1 1
Dy=-2
用Dx除以D,就是x的值,用Dy除以D,就是y的值了

F. 行列式的计算方法!具体点有些什么!

关于三阶行列式的计算,首先给出一个实例,A、B、C、D、E、F、G、H、I都是数字。先按斜线计算A*E*I,B*F*G,C*D*H,求和AEI+BFG+CDH再按斜线计算C*E*G,D*B*I,A*H*F,求和CEG+DBI+AHF行列式的值就为(AEI+BFG+CDH)-(CEG+DBI+AHF) 然后说一下这个公式。看你不知道行列式是啥玩意,那估计你也不知道行列式的性质,就这个公式而言,主要用到的是把行列式的某一行(列)的任意(非零)倍加到另一行(列)上,行列式的值不变面积公式是这个样子,外面的短竖线是绝对值符号,里面的长竖线是行列式符号,A(X1,Y1),B(X2,Y2),C(X3,Y3)是三个顶点的坐标,按照上面提到性质,公式变为这里把第一行的负一倍分别加到了二三行这个行列式的值其实和是一样的,这利用的是行列式求值的性质,你可以按照开头的三阶行列式方法计算检验。顺便提一提,i,j,k分别是X,Y,Z轴的单位向量。上面这个行列式行列式表示的其实是这个1/2 |AB||AC|sinA 这个相当于公式S=1/2 ac sinB,只是换成了角A的夹边。原因是向量AB和向量AC(向量应该知道吧)的外积就是说到外积,与内积不同的地方是,内积得到的是一个数比如 (内积用点乘号)AB · AC = (x2-x1)(x3-x1)+(y2-y1)(y3-y1) 【内积是对应坐标乘积的和】而外积得到的是一个向量比如 (外积用叉乘号)AB X AC= 【外积是用行列式计算的】这是一个向量不是一个数,因为i,j,k都是向量他的模应该是|AB X AC| = |AB||AC|sinA 【内积是AB·AC=|AB||AC| cosA】所以前面说短竖线是绝对值不是很准确,其实是向量求模的符号。至此这个公式解说完了。 最后,这个公式是相当的恶心,没什么实际作用,不知道是哪个混球想出来的,知道三点坐标的情况下,按照线段长度公式求AB,AC,利用内积求夹角的余弦值,再转换为正弦值,最后应用公式S=1/2 bc sinA 整个计算过程和直接用行列式的那个公式相比,看起来复杂不少,其实,一般数据简单的情况下,计算量远远前者小于后者。当然如果是计算机计算的话,确实这个公式简化不少。

G. 计算行列式

行列式的计算方法

1.递推法

例1 求行列式的值:

(1)

的构造是:主对角线元全为;主对角线上方第一条次对角线的元全为,下方第一条次对角线的元全为1,其余元全为0;即为三对角线型。又右下角的(n)表示行列式为n阶。

解 把类似于,但为k阶的三对角线型行列式记为。

把(1)的行列式按第一列展开,有两项,一项是

另一项是

上面的行列式再按第一行展开,得乘一个n – 2 阶行列式,这个n – 2 阶行列式和原行列式的构造相同,于是有递推关系:

(2)

移项,提取公因子β:

类似地:

(递推计算)

直接计算

若;否则,除以后移项:

再一次用递推计算:

∴, 当β≠α (3)

当β = α,从

从而。

由(3)式,若。



注 递推式(2)通常称为常系数齐次二阶线性差分方程.

注1 仿照例1的讨论,三对角线型的n阶行列式

(3)

和三对角线型行列式

(4)

有相同的递推关系式

(5)

(6)

注意

两个序列



的起始值相同,递推关系式(5)和(6)的构造也相同,故必有

由(4)式,的每一行都能提出一个因子a ,故等于乘一个n阶行列式,这一个行列式就是例1的。前面算出,故

例2 计算n阶范德蒙行列式行列式

解:

即n阶范德蒙行列式等于这n个数的所有可能的差的乘积

2.拆元法

例3:计算行列式



①×(x + a)

②×(x – a)

3.加边法

例4 计算行列式

分析:这个行列式的特点是除对角线外,各列元素分别相同.根据这一特点,可采用加边法.



4.数学归结法

例5 计算行列式

解:

猜测:

证明

(1)n = 1, 2, 3 时,命题成立。假设n≤k – 1 时命题成立,考察n=k的情形:

故命题对一切自然数n成立。

5.消去法求三对角线型行列式的值

例6 求n阶三对角线型行列式的值:

(1)

的构造是:主对角线元全为2,主对角线上方第一条次对角线与下方第一条次对角线的元全为1,其余的元全为0。

解 用消去法,把中主对角线下方第一条次对角线的元1全部消成0:首先从第二行减去第一行的倍,于是第二行变为

其次从第三行减去第二行(指新的第二行,以下同)的倍,则第三行变为

再从第四行减去第三行的倍,则第四行变为

类似地做下去,直到第n行减去第n – 1行的倍,则第n行变为

最后所得的行列式为

(2)

上面的行列式是三角型行列式,它的主对角线元顺次为

93)

又主对角线下方的元全为0。故的值等于(3)中各数的连乘积,即。

注3 一般的三对角线型行列式

(4)

也可以按上述消去法把次对角线元全部消去,得到一个三角型行列式,它的值等于该三角型行列式的主对角线元的连乘积。

6 乘以已知行列式

例7 求行列式的值:

称为循环行列式,各行自左到右均由循环排列而得,并使主对角线元全为

解 设1的立方根为,即

其中i是虚数单位,又

右乘以行列式



(1)

用,得

故(1)的行列式的第一列可由提出公因子,提后的元顺次为,类似地,(1)的行列式的第二列和第三列可提出公因子



于是

因互不相等,帮它们所构成的凡德蒙行列式的值不为零,可以从上式的左右两边约去,得



注4 在n阶的一般情形,设1的n次方根为

则得行列式的值为

这里的是由构成的n阶循环行列式:

7 利用线性代数方程组的解

例8 求n阶行列式的值:

(1)

的构造是:第i行的元顺次为

又第n行的元顺次为。

解 (1)的行列式与凡德蒙行列式

(2)

的比值可以看成线性代数方程组

(3)

的解。如能解出,乘以凡德蒙行列式(2),即是原行列式

但方程组(3)又可以看成n次多项式方程

(4)

(t是未知数,看作系数)有n个根

用根与系数的关系,即得



8 递推方程组方法

例9 求行列式的值:

(1)

是n阶行列式(在右下角用(n)表示),其结构是:主对角线元全为x ;主对角线上方的元全为y , 下方的元全为z 。

解 从 (1)的行列式的第一列减第二列,第二列减第三列,…,第n – 1列减第n列,得

(2)

上面的行列式按第一行展开,有两项,一项是(x – y)乘一个n – 1阶行列式,这个n – 1阶行列式和(2)中的n阶行列式的构造相同,即上述展开的第一项可表示为;展开的另一项是

故递推式

(3)

若z = y,则上式化为

(4)

类似地有



故可对(4)式递推计算如下:

上面得到原行列式当z = y时的值。下面讨论z≠y的情形。

把(1)的行列式的y与z对调,这相当于原行列式的行与列互换,这样的做法,行列式的值不变。于是y和z对调后,的值不变,这时(3)式变为

(5)

从(3)与(5)(递推方程组)消去,即(3)式乘以(x – z),(5)乘以(x – y),相减得



注5 当z = y时,行列式也可以用极限计算:

又行列式当z = y时可以用余式定理来做。

H. 3×3行列式的计算方法

三乘三阶行列式计算方法,如下:

三阶行列式{(A,B,C),(D,E,F),(G,H,I)},A、B、C、D、E、F、G、H、I都是数字。

1、按斜线计算A*E*I,B*F*G,C*D*H,求和AEI+BFG+CDH

2、再按斜线计算C*E*G,D*B*I,A*H*F,求和CEG+DBI+AHF

3、行列式的值就为(AEI+BFG+CDH)-(CEG+DBI+AHF)

三阶行列式的性质

性质1:行列式与它的转置行列式相等。

性质2:互换行列式的两行(列),行列式变号。

推论:如果行列式有两行(列)完全相同,则此行列式为零。

性质3:行列式的某一行(列)中所有的元素都乘以同一数k,等于用数k乘此行列式。

推论:行列式中某一行(列)的所有元素的公因子可以提到行列式符号的外面。

性质4:行列式中如果有两行(列)元素成比例,则此行列式等于零。

性质5:把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。

I. 行列式的计算方法总结

第一、行列式的计算利用的是行列式的性质,而行列式的本质是一个数字,所以行列式的变化都是建立在已有性质的基础上的等量变化,改变的是行列式的“外观”。

第二、行列式的计算的一个基本思路就是通过行列式的性质把一个普通的行列式变化成为一个我们可以口算的行列式(比如,上三角,下三角,对角型,反对角,两行成比例等)

第三、行列式的计算最重要的两个性质:

(1)对换行列式中两行(列)位置,行列式反号

(2)把行列式的某一行(列)的倍数加到另一行(列),行列式不变

对于(1)主要注意:每一次交换都会出一个负号;换行(列)的主要目的就是调整0的位置,例如下题,只要调整一下第一行的位置,就能变成下三角。

(9)斜循环行列式的计算方法扩展阅读

矩阵的加法与减法运算将接收两个矩阵作为输入,并输出一个新的矩阵。矩阵的加法和减法都是在分量级别上进行的,因此要进行加减的矩阵必须有着相同的维数。

为了避免重复编写加减法的代码,先创建一个可以接收运算函数的方法,这个方法将对两个矩阵的分量分别执行传入的某种运算。

阅读全文

与斜循环行列式的计算方法相关的资料

热点内容
牙齿萎缩治疗方法 浏览:290
手机录制闪电的正确方法 浏览:318
腰肌经膜炎的治疗方法 浏览:279
加不好的汽油车打不着火解决方法 浏览:376
网吧吃鸡设备封禁解决方法 浏览:134
最简单粗暴的练腹肌方法 浏览:384
交通事故责任认定简单方法 浏览:853
油菜封草最佳方法 浏览:753
电缆热缩管使用方法 浏览:801
黄豆堵漏用什么方法好 浏览:511
有眼袋用什么方法更好呢 浏览:971
333333怎么用简便方法计算 浏览:915
沐浴凝露使用方法 浏览:925
抛光液使用方法 浏览:140
美的光波炉的使用方法 浏览:304
鉴定分析属于什么分析方法 浏览:120
实验方法从哪里来 浏览:449
擀皮锻炼方法视频 浏览:366
篮球训练简单方法 浏览:806
oppo手机闹铃声音在哪里设置方法 浏览:738