A. 高中化学计算题的各种解题方法
这个问题实在是非常宽泛啊...主要介绍几种吧,差量法,极值法,转换法,十字交叉法
差量法是依据化学反应前后的某些“差量”(固体质量差、溶液质量差、气体体积差、气体物质的量之差等)与反应物或生成物的变化量成正比而建立的一种解题法。
此法将“差量”看作化学方程式右端的一项,将已知差量(实际差量)与化学方程式中的对应差量(理论差量)列成比例,其他解题步骤与化学方程式列比例式解题完全一致。
用差量法解题的关键是正确找出理论差量。
【适用条件】
(1)反应不完全或有残留物。
在这种情况下,差量反映了实际发生的反应,消除了未反应物质对计算的影响,使计算得以顺利进行。
(2)反应前后存在差量,且此差量易求出。这是使用差量法的前提。只有在差量易求得时,使用差量法才显得快捷,否则,应考虑用其他方法来解。
【用法】
A ~ B ~ Δx
a b a-b
c d
可得a/c=(a-b)/d
已知a、b、d即可算出c=a*d/(a-b)
化学方程式的意义中有一条:
化学方程式表示了反应前后各物质间的比例关系。
这是差量法的理论依据。
【证明】
设微观与宏观间的数值比为k.(假设单位已经统一)
A ~ B ~ Δx
a b a-b
a*k b*k (a-b)*k
可得a*k=a*[(a-b)]*k/(a-b)
推出a/(a*k)=(a-b)/[(a-b)*k]
用c替换a*k,d替换(a-b)*k
已知a、b、d即可算出c=a*d/(a-b)
因此差量法得证
【原理】
在化学反应前后,物质的质量差和参加该反应的反应物或生成物的质量成正比例关系,这就是根据质量差进行化学计算的原理。
【步骤】
1.审清题意,分析产生差量的原因。
2.将差量写在化学反应方程式的右边,并以此作为关系量。
3.写出比例式,求出未知数。
【分类】
(一)质量差法
例题:在1升2摩/升的稀硝酸溶液中加入一定量的铜粉,充分反应后溶液的质量增加了13.2克,问:(1)加入的铜粉是多少克?(2)理论上可产生NO气体多少升?(标准状况)
分析:硝酸是过量的,不能用硝酸的量来求解。铜跟硝酸反应后溶液增重,原因是生成了硝酸铜,所以可利用这个变化进行求解。
3Cu + 8HNO3 = 3Cu(NO3)2 + 2NO↑+ 4H2O 增重
192 44.8 636-504=132
X克 Y升 13.2 可得X=19.2克,Y=4.48升
(二)体积差法
例题:10毫升某气态烃在80毫升氧气中完全燃烧后,恢复到原来状况(1.01×105Pa , 270C)时,测得气体体积为70毫升,求此烃的分子式。
分析:原混和气体总体积为90毫升,反应后为70毫升,体积减少了20毫升。剩余气体应该是生成的二氧化碳和过量的氧气,下面可以利用烃的燃烧通式进行有关计算。
CxHy + (x+ )O2 → xCO2 + H2O 体积减少
1 1+
10 20
计算可得y=4 ,烃的分子式为C3H4或C2H4或CH4
(三)物质的量差法
例题:白色固体PCl5受热即挥发并发生分解:PCl5(气)= PCl3(气)+ Cl2 现将5.84克PCl5装入2.05升真空密闭容器中,在2770C达到平衡时,容器内的压强为1.01×105Pa ,经计算可知平衡时容器内混和气体物质的量为0.05摩,求平衡时PCl5的分解百分率。
分析:原PCl5的物质的量为0.028摩,反应达到平衡时物质的量增加了0.022摩,根据化学方程式进行计算。
PCl5(气)= PCl3(气)+ Cl2 物质的量增加
1 1
X 0.022
计算可得有0.022摩PCl5分解,所以结果为78.6%
【例题】
一。把6.1g干燥纯净的氯酸钾和二氧化锰的混合物放在试管里加热,当完全分解、冷却后称得剩余固体质量为4.2g,求原混合物里氯酸钾有多少克?
〔分析〕根据质量守恒定律,混合物加热后减轻的质量即为生成的氧气质量(W混-W剩=WO2),由生成的O2即可求出KClO3。
〔解答〕设混合物中有质量为xKClO3
二。把质量为10g的铁片放在50g硫酸铜溶液中,过一会儿取出,洗净、干燥、称重,铁片的质量增加到10.6g,问析出多少克铜?原硫酸铜溶液的溶质的质量分数是多少?
〔分析〕在该反应中,单质铁变成亚铁离子进入溶液,使铁片质量减少,而铜离子被置换出来附着在铁片上。理论上每56g铁参加反应后应能置换出64g铜、铁片净增加质量为64-56=8g。现在铁片增重10.6-10=0.6g并非是析出铜的质量,而是析出铜的质量与参加反应的铁的质量差。按此差量即可简便进行计算。
〔解答〕设有质量为x铜析出,有质量为yCuSO4参加反应
三。向50gFeCl3溶液中放入一小块Na,待反应完全后,过滤,得到仍有棕黄色的溶液45.9g,则投入的Na的质量为
A、4.6g B、4.1g C、6.9g D、9.2g
[解析] Na投入到FeCl3溶液发生如下反应
6Na+2FeCl3+6H2O=6NaCl+2Fe(OH)3↓+3H2↑
若2mol FeCl3与6molH2O反应,则生成6molNaCl,溶液质量减少82g,此时参加反应的Na为6mol;
现溶液质量减少4.1g,则参加反应Na应为0.3moL,质量应为6.9g。答案为(C)
四。同温同压下,某瓶充满O2共重116g,充满CO2时共重122g,充满某气体共重114g,则该气体相对分子质量为( )
A、28 B、60 C、32 D、14
[解析] 由“同温同压同体积下,不同气体的质量比等于它们的摩尔质量比”可知此题中,气体质量之差与式量之差成正比。因此可不计算本瓶的质量,直接由比例式求解:
(122-116)/(44-32)=(122-114)/(44-M(气体))
解之得,M(气体)=28。 故答案为(A)
五。向10g氧化铜通氢气,加热一段时间后,测得剩余固体的质量为8.4g 。判断剩余固体的成分和各自的质量。
[解析]剩余固体的质量为8.4g 则失去氧的质量 10 - 8.4 = 1.6g
则还原生成铜的质量 1.6×64/16 = 6.4g
剩余固体的成分 氧化铜 8.4 - 6.4 = 2g 铜 6.4g
六。10g铁样品放入足量的硫酸铜溶液中,充分反应后测得固体质量为10.8g,求铁样品中铁的纯度(假设样品中的杂质不和硫酸铜反应,也不溶于水) 。
[解析]增重0.8g 则消耗的铁物质的量为 0.8/(64-56) = 0.1mol
铁的质量 56×0.1 = 5.6g
铁的纯度 5.6/10 = 56%
七。将一定质量的铁放入100g的稀硫酸中,充分反应后测得溶液的质量为105.4g,求加的铁的质量
[解析]增重 105.4 - 100 = 5.4g
则铁物质的量 5.4/(56-2) = 0.1mol
铁的质量 0.1×56 = 5.6g
极值法
是一种重要的数学思想和分析方法。化学上所谓“极值法”就是对数据不足而感到无从下手的计算或混合物组成判断的题目,采用极端假设(即为某一成分或者为恰好完全反应)的方法以确定混合体系中各物质的名称、质量分数、体积分数,这样使一些抽象的复杂问题具体化、简单化,可达到事半功倍之效果。
转换法
定义
转换法 物理学中对于一些看不见摸不着的现象或不易直接测量的物理量,通常用一些非常直观的现象去认识或用易测量的物理量间接测量,这种研究问题的方法叫转换法。初中物理在研究概念规律和实验中多处应用了这种方法。
应用
测量仪器:秒表、电流表、电压表、电阻表、弹簧测力计、气压计、微小压强计、温度计、托盘天平、电能表、测电笔……
物理实验:探究声音产生的原因、探究液体压强的特点、探究影响导体产生电热多少的因素……
实例
物体发生形变或运动状态改变可证明一些物体受到力的作用;马德堡半球实验可证明大气压的存在;雾的出现可以证明空气中含有水蒸气;影子的形成可以证明光沿直线传播;月食现象可证明月亮不是光源;奥斯特实验可证明电流周围存在着磁场;指南针指南北可证明地磁场的存在;扩散现象可证明分子做无规则运动;铅块实验可证明分子间存在着引力;运动的物体能对外做功可证明它具有能等。
十字交叉法 (注:只适用于由两种物质构成的混合物 M甲:甲物质的摩尔质量 M乙:乙物质的摩尔质量 M混:甲乙所构成的混合物的摩尔质量 n:物质的量,M乙<M混<M甲)
据:
甲:M甲 M混-M乙
M混
乙:M乙 M甲-M混
得出:
n甲:n乙=(M混-M乙):(M甲-M混)
{M甲 M混 M乙 必须是同一性质的量 (即要是摩尔质量,必都是摩尔质量,要是式量,必都是式量) X 、Y 与 M 之间关系:X 、Y 与 M 之间可在化学反应式中相互算出来 (如:在化学反应式中,物质的量 n 和 反应中的热量变化 Q 之间可相互算出,则 Q 之比【Q甲/Q乙】= (n混—n乙)/(n甲—n混)【n乙<n混<n甲】,n 之比【n甲/n乙】=(Q混—Q乙)/(Q甲—Q混)【Q乙<Q混<Q甲】) }
一、十字交叉相乘法
这是利用化合价书写物质化学式的方法,它适用于两种元素或两种基团组成的化合物。其根据的原理是化合价法则:正价总数与负价总数的代数和为0或正价总数与负价总数的绝对值相等。现以下例看其操作步骤。
二、十字交叉相比法
我们常说的十字交叉法实际上是十字交叉相比法,它是一种图示方法。十字交叉图示法实际上是代替求和公式的一种简捷算法,它特别适合于两总量、两关系的混合物的计算(即2—2型混合物计算),用来计算混合物中两种组成成分的比值。
三、十字交叉消去法
十字交叉消去法简称为十字消去法,它是一类离子推断题的解法,采用“十字消去”可缩小未知物质的范围,以便于利用题给条件确定物质,找出正确答案。
其实十字交叉法就是解二元一次方程的简便形式 如果实在不习惯就可以例方程解 但我还是给你说说嘛 像A的密度为10 B的密度为8 它们的混合物密度为9 你就可以把9放在中间 把10 和 8 写在左边 标上AB 然后分别减去9 可得右边为1 1 此时之比这1:1 了这个例子比较简单 但难的也是一样 你自己好好体会一下嘛 这个方法其实很好 节约时间 特别是考理综的时候
(一)混和气体计算中的十字交叉法
【例题】在常温下,将1体积乙烯和一定量的某气态未知烃混和,测得混和气体对氢气的相对密度为12,求这种烃所占的体积。
【分析】根据相对密度计算可得混和气体的平均式量为24,乙烯的式量是28,那么未知烃的式量肯定小于24,式量小于24的烃只有甲烷,利用十字交叉法可求得甲烷是0.5体积
(二)同位素原子百分含量计算的十字叉法
【例题】溴有两种同位素,在自然界中这两种同位素大约各占一半,已知溴的原子序数是35,原子量是80,则溴的两种同位素的中子数分别等于。
(A)79 、81 (B)45 、46 (C)44 、45 (D)44 、46
【分析】两种同位素大约各占一半,根据十字交叉法可知,两种同位素原子量与溴原子量的差值相等,那么它们的中子数应相差2,所以答案为D
(三)溶液配制计算中的十字交叉法
【例题】某同学欲配制40%的NaOH溶液100克,实验室中现有10%的NaOH溶液和NaOH固体,问此同学应各取上述物质多少克?
【分析】10%NaOH溶液溶质为10,NaOH固体溶质为100,40%NaOH溶液溶质为40,利用十字交叉法得:需10%NaOH溶液为
×100=66.7克,需NaOH固体为 ×100=33.3克
( 四)混和物反应计算中的十字交叉法
【例题】现有100克碳酸锂和碳酸钡的混和物,它们和一定浓度的盐酸反应时所消耗盐酸跟100克碳酸钙和该浓度盐酸反应时消耗盐酸量相同。计算混和物中碳酸锂和碳酸钡的物质的量之比。
【分析】可将碳酸钙的式量理解为碳酸锂和碳酸钡的混和物的平均式量,利用十字交叉法计算可得碳酸锂和碳酸钡的物质的量之比97:26
守恒法
守恒法的原理就是利用质量守恒原理。在化学反应中,所有物质反应前后质量之和是一变的,这在任何条件下都适用。
B. 盘点高中化学计算中常用的几种方法
化学计算方法篇一:高中化学计算中常用的几种方法
一.差量法
(1)不考虑变化过程,利用最终态(生成物)与最初态(反应物)的量的变化来求解的方法叫差量法。无须考虑变化的过程。只有当差值与始态量或终态量存在比例关系时,且化学计算的差值必须是同一物理量,才能用差量法。其关键是分析出引起差量的原因。
(2)差量法是把化学变化过程中引起的一些物理量的增量或减量放在化学方程式的右端,作为已知量或未知量,利用各对应量成正比求解。
(3)找出“理论差量”。这种差量可以是质量、物质的量、气态物质的体积和压强、反应过程中的热量等。用差量法解题是先把化学方程式中的对应差量(理论差量)跟实际差量列成比例,然后求解。如:
-12C(s)+O2(g)===2CO(g) ΔH=-221 kJ·mol Δm(固),Δn(气),ΔV(气)
2 mol 1 mol 2 mol 221 kJ 24 g 1 mol 22.4 L(标况)
1.固体差量
例1.将质量为100克的铁棒插入硫酸铜溶液中,过一会儿取出,烘干,称量,棒的质量变为100.8克。求有多少克铁参加了反应。(答:有5.6克铁参加了反应。)
解:设参加反应的铁的质量为
x。
Fe+CuSO4===FeSO4+Cu 棒的质量增加(差量)
56 6464-56=8
x 100.8克-100克=0.8克
56:8=x:0.8克答:有5.6克铁参加了反应。
2.体积差法
例2.将a L NH3通过灼热的装有铁触媒的硬质玻璃管后,气体体积变为b L(气体体积均在同温同压下测定), 该b L气体中NH3的体积分数是(C )
2a-bb-a2a-bb-aA. C. abba
设参加反应的氨气为x ,则
2NH3N2+3H2 ΔV
2 2
x b-a
x=(b-a) L
所以气体中NH3的体积分数为
3.液体差量
例3.用含杂质(杂质不与酸作用,也不溶于水)的铁10克与50克稀硫酸完全反应后,滤去杂质,
所得液体质量为55.4克,求此铁的纯度。
解:设此铁的纯度为x。
Fe
+H2SO4===FeSO4+H2↑ 溶液质量增加(差量)
56 256-2=54
10x克55.4克-50克=5.4克 a L-b-ab L2a-b b
56:54=10x克:5.4克
第 1 页 共 3 页
二.关系式法
建立关系式一般途径是:(1)利用微粒守恒建立关系式;(2)利用化学方程式之间物质的量的关系建立关系式;(3)利用方程式的加和建立关系式等。
三.守恒法
(1)化合物中元素正负化合价总数守恒。
(2)电解质溶液中阳离子所带正电荷总数与阴离子所带负电荷总数守恒。
(3)化学反应前后物质的总质量守恒。
(4)化学反应前后同种元素的原子个数守恒。
(5)氧化还原反应中得失电子总数守恒。
(6)溶液稀释、浓缩、混合前后溶质量(质量或物质的量)守恒。
由于上述守恒关系不随微粒的组合方式或转化历程而改变,因此可不追究中间过程,直接利用守恒关系列式计算或观察估算的方法即为守恒法。运用守恒法解题既可以避免书写繁琐的化学方程式,提高解题的速度,又可以避免在纷繁复杂的解题背景中寻找关系式,提高解题的准确度。
1.元素守恒法
催化剂例1.4NH3+5O2=====△4NO+6H2O2NO+O2===2NO23NO2+H2O===2HNO3+NO
经多次氧化和吸收,由N元素守恒知:NH3~HNO3
2.电子转移守恒法
--失去8e得4e2-例2.NH3――→HNO3, O2――→2O
由得失电子总数相等知,NH3经氧化等一系列过程生成HNO3,NH3和O2的关系为NH3~2O2。
例3.黄铁矿主要成分是FeS2。某硫酸厂在进行黄铁矿成分测定时,取0.100 0 g样品在空气中充分灼烧,将生成的SO2
-1气体与足量Fe2(SO4)3溶液完全反应后,用浓度为0.020 00 mol·L的K2Cr2O7标准溶液滴定至终点,消耗K2Cr2O7标准溶
3+2-2++2-2++3+3+液25.00 mL。已知:SO2+2Fe+2H2O===SO4+2Fe+4H Cr2O7+6Fe+14H===2Cr+6Fe+7H2O
求样品中FeS2的质量分数是(假设杂质不参加反应)________________。
高温解析 (1)据方程式4FeS2+11O2=====2Fe2O3+8SO2
3+2-2++SO
2+2Fe+2H2O===SO4+2Fe+4H
2-2++3
+3+Cr2O7+6Fe+14H===2Cr
+6Fe+7H2O
32-2+得关系式:Cr2O7~6Fe~3SO2~2 2
32
0.020 00 mol·L×0.025 00 -1m
1202 m(FeS2)=0.090 00 g 样品中FeS2的质量分数为90.00%
四.极值法(也称为极端假设法)
①把可逆反应假设成向左或向右进行的完全反应。
②把混合物假设成纯净物。
③把平行反应分别假设成单一反应。
例1.在一容积固定的密闭容器中进行反应:2SO2(g)+O23(g)。已知反应过程中某一时刻SO2、O2、SO3
-1-1-1的浓度分别为0.2 mol·L、0.1 mol·L、0.2 mol·L。当反应达到平衡时,各物质的浓度可能存在的数据是(B )
-1-1 -1A.SO2为0.4 mol·L,O2为0.2 mol·LB.SO2为0.25 mol·L
-1 -1C.SO2和SO3均为0.15 mol·LD.SO3为0.4 mol·L
-1解析 本题可根据极端假设法进行分析。若平衡向正反应方向移动,达到平衡时SO3的浓度最大为0.4 mol·L,
而SO2和O2的浓度最小为0;若平衡向逆反应方向移动,达到平衡时SO3的浓度最小为0,而SO2和O2的最大浓度分
-1-1别为0.4 mol·L、0.2 mol·L,考虑该反应为可逆反应,反应不能向任何一个方向进行到底,因此平衡时SO3、
-1,-1,-1O2、SO2的浓度范围应分别为0<c(SO3)<0.4 mol·L0<c(O2)<0.2 mol·L0<c(SO2)<0.4 mol·L。SO2反应转化成
-1-1-1SO3,而SO3分解则生成SO2,那么c(SO3)+c(SO2)=0.2 mol·L+0.2 mol·L=0.4 mol·L。对照各选项,只
有B项符号题意。
例2. 在含有a g HNO3的稀硝酸中,加入b g铁粉充分反应,铁全部溶解并生成NO,有 g HNO3被还原,则a∶b不可4
能为( A ) A.2∶1B.3∶1 C.4∶1 D.9∶2
解析 Fe与HNO3反应时,根据铁的用量不同,反应可分为两种极端情况。
(1)若Fe过量,发生反应:3Fe+8HNO3(稀)===3Fe(NO3)2+2NO↑+4H2O
第 2 页 共 3 页
a
baa3则有=此为a∶b的最小值。 5663b1
(2)若HNO3过量,发生反应:Fe+4HNO3(稀)===Fe(NO3)3+NO↑+2H2O
baa9则有:∶此为a∶b的最大值。 5663b2
3a9所以a∶b,即a∶b的比值在此范围内均合理。 1b2
五.平均值规律及应用
(1)依据:若XA>XB ,则XA>X>XB,X代表平均相对原子(分子)质量、平均浓度、平均含量、平均生成量、平均消耗量等。
(2)应用:已知X可以确定XA、XB的范围;或已知XA、XB可以确定X的范围。
解题的关键是要通过平均值确定范围,很多考题的平均值需要根据条件先确定下来再作出判断。实际上,它是极值法的延伸。
例1.两种金属混合物共15 g,投入足量的盐酸中,充分反应后得到11.2 L H2(标准状况),则原混合物的组成肯定不可能为( B ) A.Mg和Ag B.Zn和Cu C.Al和ZnD.Al和Cu
+解析 本题可用平均摩尔电子质量(即提供1 mol电子所需的质量)法求解。反应中H被还原生成H2,由题意可知15 g
--1金属混合物可提供1 mol e,其平均摩尔电子质量为15 g·mol。选项中金属Mg、Zn、Al的摩尔电子质量分别为12 g·mol
-1-1-1、32.5 g·mol、9 g·mol,其中不能与盐酸反应的Ag和Cu的摩尔电子质量可看做∞。根据数学上的平均值原理
-1-1可知,原混合物中一种金属的摩尔电子质量大于15 g·mol,另一金属的摩尔电子质量小于15 g·mol。答案 B
例2.实验室将9 g铝粉跟一定量的金属氧化物粉末混合形成铝热剂。发生铝热反应之后,所得固体中含金属单质为18 g,则该氧化物粉末可能是(C ) ①Fe2O3和MnO2 ②MnO2和V2O5 ③Cr2O3和V2O5 ④Fe3O4和FeO
A.①② B.②④C.①④D.②③
9 g11解析 n(Al)==,Almol×3=1 mol,则生成金属的摩尔电子质量-127 g·mol33
--1(转移1 mol e生成金属的质量)为18 g·mol。
56 g55 g-1-1①项生成Fe的摩尔电子质量为,生成Mn的摩尔电子质量为,根据平均3 mol4 mol
51 g-1-1值规律,①正确;②生成Mn的摩尔电子质量为13.75 g·mol,生成V的摩尔电子质量为g·mol,根据5 mol
平均值规律,②不可能生成单质18 g;同理,③也不可能生成金属单质18 g;④Al完全反应时生成Fe的质量大于18 g,当氧化物粉末不足量时,生成的金属可能为18 g,④正确。答案 C
巩固练习:
1.一定条件下,合成氨气反应达到平衡时,测得混合气体中氨气的体积分数为20.0%,与反应前的体积相比,反应后体积缩小的百分率是(A)A. 16.7%B. 20.0%C. 80.0%D. 83.3%
-1--3+2+2.取KI溶液25 mL,向其中滴加0.4 mol·L的FeCl3溶液135 mL,I完全反应生成I2:2I+2Fe=I2+2Fe。将反应后的
2+溶液用CCl4萃取后分液,向分出的水溶液中通入Cl2至0.025 mol时,Fe恰好完全反应。求KI溶液的物质的量浓度。
(2mol/L)
3.两种气态烃以任意比例混合,在105℃时,1 L该混合烃与9 L氧气混合,充分燃烧后恢复到原状态,所得气体体积仍是10 L。下列各组混合烃中符合此条件的是(A)
①CH4、C2H4②CH4、C3H6③C2H4、C3H4 ④C2H2、C3H6
A.①③B.②④ C.①④ D.②③
-14.有一在空气中放置了一段时间的KOH固体,经分析测知其含水2.8%、含K2CO3 37.3%,取1 g该样品投入25 mL 2 mol·L
-1的盐酸中后,多余的盐酸用1.0 mol·L KOH溶液30.8 mL恰好完全中和,蒸发中和后的溶液可得到固体(B)
A.1 gB.3.725 g C.0.797 gD.2.836 g
6.铜和镁的合金4.6 g完全溶于浓硝酸,若反应后硝酸被还原只产生4 480 mL的NO2气体和336 mL的N2O4气体(都已折算到标准状况),在反应后的溶液中,加入足量的氢氧化钠溶液,生成沉淀的质量为(B)
A.9.02 g B.8.51 g C.8.26 gD.7.04 g
化学计算方法篇二:化学计算中的五种基本解题方法
【题型说明】
高考命题中,最常见的化学计算方法有“差量法”、“关系式法”、“极值法”、“平均值法”、“终态法”等,在这几种计算方法中,充分体现了物质的量在化学计算中的核心作用和纽带作用,依据方程式的计算又是各种计算方法的基础,其解题过程如下:
(1)化学方程式中有关量的关系
aA(g)+bB(g)===cC(g)+dD(g)
质量比aMA ∶ bMB∶ cMC∶ dMD
物质的量比 a ∶ b ∶ c ∶ d
体积比a ∶ b ∶ c ∶ d
(2)一般步骤
①根据题意写出并配平化学方程式。
②依据题中所给信息及化学方程式判断过量物质,用完全反应物质的量进行计算。 ③把已知的和需要求解的量[用n(B)、V(B)、m(B)或设未知数为x表示]分别写在化学方程式有关化学式的下面,两个量及单位“上下一致,左右相当”。
④选择有关量(如物质的量、气体体积、质量等)的关系作为计算依据,列比例式,求未知量。
“差量法”在化学方程式计算中的妙用
[题型示例]
【示例1】 (2014·安徽名校联考)16 mL由NO与NH3组成的混合气体在催化剂作用下于400 ℃左右可发生反应:6NO+4NH35N2+6H2O(g),达到平衡时在相同条件下气体体积变为17.5 mL,则原混合气体中NO与NH3的物质的量之比有四种情况:①5∶3、②3∶2、③4∶3、④9∶7。其中正确的是( )。
A.①②
C.②③
思路点拨 根据反应前后气体的总体积,可用差量法直接求解。
6NO + 4NH35N2+6H2O(g) ΔV(气体的体积差)
6 mL4 mL 5 mL 6 mL (5+6)-(4+6)=1(mL)
(理论差量)
9 mL6 mL 17.5-16=1.5(mL)
(实际差量) B.①④D.③④
由此可知共消耗15 mL气体,还剩余1 mL气体,假设剩余的气体全部是NO,则V(NO)∶V(NH3)=(9 mL+1 mL)∶6 mL=5∶3,假设剩余的气体全部是NH3,则V(NO)∶V(NH3)=9 mL∶(6 mL+1 mL)=9∶7,但因该反应是可逆反应,剩余气体实际上是NO、NH3的混合气体,故V(NO)∶V(NH3)介于5∶3与9∶7之间,对照所给的数据知3∶2与4∶3在此区间内。
答案 C
【方法指导】
1.所谓“差量”就是指反应过程中反应物的某种物理量之和(始态量)与同一状态下生成物的相同物理量之和(终态量)的差,这种物理量可以是质量、物质的量、气体体积、气体压强、反应过程中的热效应等。
2.计算依据:化学反应中反应物或生成物的量与差量成正比。
3.解题关键:一是明确产生差量的原因,并能根据化学方程式求出理论上的差值(理论差量)。二是结合题中的条件求出或表示出实际的差值(实际差量)。
[题组精练]
1.一定质量的碳和8 g氧气在密闭容器中于高温下反应,恢复到原来的温度,测得容器内的压强变为原来的1.4倍,则参加反应的碳的质量为( )。
A.2.4 g
C.6 g
高温高温B.4.2 gD.无法确定 解析 由化学方程式:C+O2=====CO2和2C+O2=====2CO可知,当产物全部是CO2
时,气体的物质的量不变,温度和体积不变时气体的压强不变;当产物全部是CO时,气体的物质的量增大1倍,温度和体积不变时压强增大1倍,现在气体压强变为原来的1.4倍,
8 g故产物既有CO2,又有CO。n(O2)-0.25 mol,由阿伏加德罗定律可知,气体压32 g·mol强变为原来的1.4倍,气体的物质的量变为原来的1.4倍,即Δn(气体)=0.25 mol×(1.4-1)=0.1 mol。
2C + O2=====2CO Δn(气体)
2 mol 1 mol 1 mol
0.2 mol 0.1 mol 0.1 mol
则生成CO消耗0.1 mol O2,生成CO2消耗0.15 mol O2。
C + O2=====CO2
0.15 mol 0.15 mol
故n(C)=0.2 mol+0.15 mol=0.35 mol,m(C)=0.35 mol×12 g·mol1=4.2 g。 -高温高温
答案 B
2.为了检验某含有NaHCO3杂质的Na2CO3样品的纯度,现将w1 g样品加热,其质量
变为w2 g,则该样品的纯度(质量分数)是( )。
84w2-53w1 31w1
73w-42w 31w1
解析 样品加热发生的反应为
2NaHCO3=====Na2CO3+H2O+CO2↑ Δm
168 106 62
m(NaHCO3) (w1-w2)g
168?w-w?故样品中NaHCO3质量为g, 62
样品中Na2CO3质量为w1 g-168?w1-w2?, 62△84?w1-w2?B.31w1115w-84wD. 31w1
168?w1-w2?w1 g-g6284w2-53w1m?NaCO?其质量分数为= w1 g31w1m?样品?
答案 A
3.白色固体PCl5受热即挥发并发生分解:PCl5(g)PCl3(g)+Cl2(g)。现将5.84 g PCl5装入2.05 L真空密闭容器中,在277 ℃ 下达到平衡,容器内压强为1.01×105 Pa,经计算可知平衡时容器内混合气体的物质的量为0.05 mol,平衡时PCl5的分解率为________。
5.84 g解析 原n(PCl5)=-≈0.028 mol,设分解的PCl5的物质的量为x mol,则 208.5 g·molPCl5(g)PCl3(g)+Cl2(g) 物质的量增加(Δn)
1 1 11
0.05 mol-0.028 molx mol=0.022 mol
所以x=0.022
0.022 molPCl5的分解率=100%≈78.6%。 0.028 mol
答案 78.6%
【解题模板】
步骤:一是表示出理论差值及相应反应物、生成物对应的物理量,要注意不同物质的物理量及单位间的对应关系;二是表示出实际差量并写在相应位臵(注意应将理论差值与实际差值写在化学方程式最右侧);三是根据比例关系建立方程式并求出结果。
图示:
解答连续反应类型计算题的捷径——关系式法
[题型示例]
【示例2】 5.85 g NaCl固体与足量浓H2SO4和MnO2共热,逸出的气体又与过量H2发生爆炸反应,将爆炸后的气体溶于一定量水后再与足量锌作用,最后可得H2________ L(标准状况)。
思路点拨 若先由NaCl――→HCl算出HCl的量,再由MnO2+4HCl(浓)=====MnCl2△
+Cl2↑+2H2O算出Cl2的量,??这样计算非常繁琐。找出以下关系式就可迅速求解。
设可得H2的物质的量为x,5.85 g NaCl的物质的.量为0.1 mol。
11NaCl ~ HCl ~ 2 ~ HCl ~ H2 22
0.1 mol x
显然x=0.05 mol,
则V(H2)=0.05 mol×22.4 L·mol1=1.12 L。 -浓H2SO4△
答案 1.12
【方法指导】
多步连续反应计算的特征是多个化学反应连续发生,起始物与目标物之间存在定量关系。解题时应先写出有关反应的化学方程式,依据方程式找出连续反应的过程中不同反应步骤之间反应物、生成物物质的量的关系,最后确定已知物和目标产物之间的物质的量的关系,列出计算式求解,从而简化运算过程。
[题组精练]
1.工业上制硫酸的主要反应如下:
4FeS2+11O2=====2Fe2O3+8SO2 2SO2+O2=====2SO3 SO3+H2O===H2SO4 △
煅烧2.5 t含85%FeS2的黄铁矿石(杂质不参加反应)时,FeS2中的S有5.0%损失而混入炉渣,可制得________t 98%的硫酸。
解析 根据化学方程式,可得关系式:FeS2~2SO2~2SO3~2H2SO4,即:FeS2~2H2SO4。过程中硫元素的损耗可认为第一步反应中的损耗,故可制得98%硫酸的质量是98×2×2.5 t×85%×?1-5.0%?=3.36 t。
120×98%高温催化剂
答案 3.36
2.(2014·北京房山区模拟)氯化亚铜(CuCl)是重要的化工原料。国家标准规定合格CuCl产品的主要质量指标为CuCl的质量分数大于96.50%。工业上常通过下列反应制备CuCl:
2CuSO4+Na2SO3+2NaCl+Na2CO3===2CuCl↓+3Na2SO4+CO2↑
(1)CuCl制备过程中需要质量分数为20.0%的CuSO4溶液,试计算配制该溶液所需的CuSO4·5H2O与H2O的质量之比。
(2)准确称取所制备的0.250 0 g CuCl样品置于一定量的0.5 mol·L1FeCl3溶液中,待样-
品完全溶解后,加水20 mL,用0.100 0 mol·L
Ce(SO4)2溶液。有关化学反应为
Fe3+CuCl===Fe2+Cu2+Cl +++--1的Ce(SO4)2溶液滴定到终点,消耗24.60 mL
Ce4+Fe2===Fe3+Ce3 ++++
通过计算说明上述样品中CuCl的质量分数是否符合标准。
解析 (1)设需要CuSO4·5H2O的质量为x,H2O的质量为y。CuSO4·5H2O的相对分子质量为250,CuSO4的相对分子质量为160,依题意有
160×x25020.0,x∶y=5∶11。 100x+y
(2)设样品中CuCl的质量为z。
由化学反应方程式可知:CuCl~Fe2~Ce4 ++
99.5 g1 mol则:= --z0.100 0 mol·L×24.60×10L
z=0.244 8 g
0.244 8 gCuCl的质量分数为×100%=97.92% 0.250 0 g
97.92%>96.50%,所以样品中的CuCl符合标准。
答案 (1)5∶11 (2)符合
【解题建模】
应用有关化学方程式或原子守恒规律找出物质变化过程中已知量与待求量之间的数量关系(即找准关系式),然后列式计算。
极限思维的妙用——极值法
[题型示例]
【示例3】 将一定质量的Mg、Zn、Al混合物与足量稀H2SO4反应,生成H2 2.8 L(标准状况),原混合物的质量可能是(双选)( )。
A.2 g B.4 g
化学计算方法篇三:化学计算基本方法
一 差量法
差量法是根据化学变化前后物质的量发生变化,找出所谓“理论差值”。这个差值可以是质量,气体物质的体积,压强。物质的量等。该值的大小与参加反应的物质有关量成正比。差量法就是借助于这种比例关系,解决一定量变的计算题。解此类题的关键是根据题意确定“理论差量”,再根据题目提供的“实际差量”,列出比例式,求出答案。
1。 质量差。
如果题目给出了某一个反应过程中物质始态质量与终态质量,常用反应前后的质量差来解题。
例一在200C时将11.6克CO2和H2O(g)的混合气体通过足量的Na2O2,反应完全后,固体质量增加3.6g。求混合气体的平均相对分子量。
方法一:
2006年6月16日 1 0
方法二:
2。体积差。
当有气体参加化学反应且题目中涉及前后气体体积的差量来进行计算。
例二 在标况下,500ml含O3的氧气,如果其中的O3完全分解,体积变为520ml,求原混合气体中氧气和臭氧的体积各是多少?
二守恒法
所谓“守恒”,就是以化学反应过程中存在的某些守恒关系如质量守恒.原子守恒.得失电子守恒等作为依据,寻找化学式中正负化合价总数绝对值相等;复反解反应中阴阳离子所带的正负电荷总量相等;氧化还原反应中氧化剂与还原剂得失电子总数相等......
2006年6月16日 2
1。电荷守恒法
例三
-1L 溶-液中+含SO42- 0.00025mol,CL0.0005mol,NO30.00025mol,Na0.00025mol, 其
余为 H则 H的物质的量浓度为多少?
2.电子守恒法
例四 某氧化剂X2O7,在溶液中0.2mol该离子恰好能使0.6molSO3完全氧化,则X2O7还原后的化合价为多少?
3.质量守恒法
例五 在臭氧发生器中装入100mlO2, 经反应3O2=2O3最后气体体积变为95ml(气体体积均在标况下测定),则反应后混和气体的密度为多少?
2006年6月16日 3 ,.2-2-2-+,+
三 十字交叉法
十字交叉法是巧解二元混和物问题一种常规方法.若.a , b分别表示某二元混和物中的两种组分A ,B的量,c为a,b地相对平均值;n(A),n(B)为二元混和体系中A和B地组成比: a c-b
/ ( c-b ):(a-c)=n(A):n(B)
/
ba-c
十字交叉法的应用范围:
(1)根据元素地相对原子质量和同位素质量数,求同位素原子百分比.
(2)根据混和物地平均相对分子质量与组分地相对分子质量,求各组分物质的量之比。
(3)根据混和物的平均化学式与组分化学式,求各组分的物质的量之比。
(4) 根据溶液稀释,浓缩,混合前后的溶质质量分数(或物质的量浓度),求原溶液与增减溶剂和浓,稀溶液的质量比(或近似体积比)。
2006年6月16日 4
(5)根据混和物平行反应中某反应物的平均消耗量或某产物的平均生成量,计算各组分的物质的量之比。
1。有关溶液的稀释,加浓及浓度计算的应用。
例六 把100g10%KCL溶液浓度变为20%需加多少克KCL?或蒸发多少克水?或与多少克25%KCL溶液混合?
2.有关同位素原子量及平均原子量的应用。
例七 晶体硼由10
5B和11
5B两种同位素构成,已知5.4g晶体硼
与H2反应全部转化为硼烷(B2H4),标况下5.6LB2H4, 则晶体硼中
3。有关分子量,平均分子量计算中的应用
例八 在容积为1L干燥烧瓶中用向下排空气法充入NH3 后,2006年6月16日 5 105B与 5B 两种同位素原子个数比为 多少?
C. 高中化学常用的7种计算方法
在每年的化学高考试题中,计算题的分值大约要占到15%左右,从每年的高考试卷抽样分析报告中经常会说计算题的得分率不是太高,大家在心理上对计算题不太重视,使得每次考试都会有不少考生在计算方面失分太多。高一化学中计算类型比较多,其中有些计算经常考查,如能用好方法,掌握技巧,一定能达到节约时间,提高计算的正确率。下面就谈一谈解答计算的一些巧解和方法。
一、差量法
差量法是根据物质变化前后某种量发生变化的化学方程式或关系式,找出所谓“理论差量”,这个差量可以是质量差、气态物质的体积差或物质的量之差等。该法适用于解答混合物间的反应,且反应前后存在上述差量的反应体系
二、 守恒法
化学反应的实质是原子间重新组合,依据质量守恒定律在化学反应中存在一系列守恒现象,如:质量守恒、原子守恒、元素守恒、电荷守恒、电子得失守恒等,利用这些守恒关系解题的方法叫做守恒法。质量守恒就是化学反应前后各物质的质量总和不变,在配制或稀释溶液的过程中,溶质的质量不变。原子守恒即反应前后主要元素的原子的个数不变,物质的量保持不变。元素守恒即反应前后各元素种类不变,各元素原子个数不变,其物质的量、质量也不变。电荷守恒即对任一电中性的体系,如化合物、混和物、溶液、胶体等,电荷的代数和为零,即正电荷总数和负电荷总数相等。电子得失守恒是指在发生氧化-还原反应时,氧化剂得到的电子数一定等于还原剂失去的电子数,无论是自发进行的氧化-还原反应还是以后将要学习的原电池或电解池均如此。
三、 关系式法
实际化工生产中以及化学工作者进行科学研究时,往往涉及到多步反应:从原料到产品可能要经过若干步反应;测定某一物质的含量可能要经过若干步中间过程。对于多步反应体系,依据若干化学反应方程式,找出起始物质与最终物质的量的关系,并据此列比例式进行计算求解方法,称为“关系式”法。利用关系式法可以节省不必要的中间运算步骤,避免计算错误,并能迅速准确地获得结果。用关系式解题的关键是建立关系式,建立关系式的方法主要有:1、利用微粒守恒关系建立关系式,2、利用方程式中的化学计量数间的关系建立关系式,3、利用方程式的加合建立关系式。
四、方程式叠加法
许多化学反应能发生连续、一般认为完全反应,这一类计算,如果逐步计算比较繁。如果将多步反应进行合并为一个综合方程式,这样的计算就变为简单。如果是多种物质与同一物质的完全反应,若确定这些物质的物质的量之比,也可以按物质的量之比作为计量数之比建立综合方程式,可以使这类计算变为简单。
五、等量代换法
在混合物中有一类计算:最后所得固体或溶液与原混合物的质量相等。这类试题的特点是没有数据,思考中我们要用“此物”的质量替换“彼物”的质量,通过化学式或化学反应方程式计量数之间的关系建立等式,求出结果。
六、摩尔电子质量法
在选择计算题中经常有金属单质的混合物参与反应,金属混合物的质量没有确定,又由于价态不同,发生反应时转移电子的比例不同,讨论起来极其麻烦。此时引进新概念“摩尔电子质量”计算就极为简便,其方法是规定“每失去1mol电子所需金属的质量称为摩尔电子质量”。可以看出金属的摩尔电子质量等于其相对原子质量除以此时显示的价态。如Na、K等一价金属的摩尔电子质量在数值上等于其相对原子质量,Mg、Ca、Fe、Cu等二价金属的摩尔电子质量在数值上等于其相对原子质量除以2,Al、Fe等三价金属的摩尔电子质量在数值上等于其相对原子质量除以3。
七、极值法
“极值法”即 “极端假设法”,是用数学方法解决化学问题的常用方法,一般解答有关混合物计算时采用。可分别假设原混合物是某一纯净物,进行计算,确定最大值、最小值,再进行分析、讨论、得出结论。
八、优先原则
关于一种物质与多种物质发生化学反应的计算,首先要确定反应的先后顺序:如没有特殊要求,一般认为后反应的物质在先反应物质完全反应后再发生反应。计算时要根据反应顺序逐步分析,才能得到正确答案。
计算题常用的一些巧解和方法
在每年的化学高考试题中,计算题的分值大约要占到15%左右,从每年的高考试卷抽样分析报告中经常会说计算题的得分率不是太高,大家在心理上对计算题不太重视,使得每次考试都会有不少考生在计算方面失分太多。高一化学中计算类型比较多,其中有些计算经常考查,如能用好方法,掌握技巧,一定能达到节约时间,提高计算的正确率。下面就谈一谈解答计算的一些巧解和方法。
一、差量法
差量法是根据物质变化前后某种量发生变化的化学方程式或关系式,找出所谓“理论差量”,这个差量可以是质量差、气态物质的体积差或物质的量之差等。该法适用于解答混合物间的反应,且反应前后存在上述差量的反应体系。
例1
将碳酸钠和碳酸氢钠的混合物21.0g,加热至质量不再变化时,称得固体质量为12.5g。求混合物中碳酸钠的质量分数。
解析
混合物质量减轻是由于碳酸氢钠分解所致,固体质量差21.0g-14.8g=6.2g,也就是生成的CO2和H2O的质量,混合物中m(NaHCO3)=168×6.2g÷62=16.8g,m(Na2CO3)=21.0g-16.8g=4.2g,所以混合物中碳酸钠的质量分数为20%。
二、 守恒法
化学反应的实质是原子间重新组合,依据质量守恒定律在化学反应中存在一系列守恒现象,如:质量守恒、原子守恒、元素守恒、电荷守恒、电子得失守恒等,利用这些守恒关系解题的方法叫做守恒法。质量守恒就是化学反应前后各物质的质量总和不变,在配制或稀释溶液的过程中,溶质的质量不变。原子守恒即反应前后主要元素的原子的个数不变,物质的量保持不变。元素守恒即反应前后各元素种类不变,各元素原子个数不变,其物质的量、质量也不变。电荷守恒即对任一电中性的体系,如化合物、混和物、溶液、胶体等,电荷的代数和为零,即正电荷总数和负电荷总数相等。电子得失守恒是指在发生氧化-还原反应时,氧化剂得到的电子数一定等于还原剂失去的电子数,无论是自发进行的氧化-还原反应还是以后将要学习的原电池或电解池均如此。
1. 原子守恒
例2
有0.4g铁的氧化物,
用足量的CO 在高温下将其还原,把生成的全部CO2通入到足量的澄清的石灰水中得到0.75g固体沉淀物,这种铁的氧化物的化学式为()
A. FeO
B. Fe2O3
C. Fe3O4
D. Fe4O5
解析
由题意得知,铁的氧化物中的氧原子最后转移到沉淀物CaCO3中。且n(O)=n(CaCO3)=0.0075mol, m(O)=0.0075mol×16g/mol=0.12g。m(Fe)=0.4g-0.12g=0.28g,n(Fe)=0.005mol。n(Fe)∶n(O)=2:3,选B
2. 元素守恒
例3
将几种铁的氧化物的混合物加入100mL、7mol�6�1L―1的盐酸中。氧化物恰好完全溶解,在所得的溶液中通入0.56L(标况)氯气时,恰好使溶液中的Fe2+完全转化为Fe3+,则该混合物中铁元素的质量分数为
()
A. 72.4%
B. 71.4%
C. 79.0%
D. 63.6%
解析
铁的氧化物中含Fe和O两种元素,由题意,反应后,HCl中的H全在水中,O元素全部转化为水中的O,由关系式:2HCl~H2O~O,得:n(O)= ,m(O)=0.35mol×16g�6�1mol―1=5.6 g;
而铁最终全部转化为FeCl3,n(Cl)=0.56L ÷22.4L/mol×2+0.7mol=0.75mol,n(Fe)= ,m(Fe)=0.25mol×56g�6�1mol―1=14 g,则 ,选B。
3. 电荷守恒法 例4
将8g
Fe2O3投入150mL某浓度的稀硫酸中,再投入7g铁粉收集到1.68L
H2(标准状况),同时,Fe和Fe2O3均无剩余,为了中和过量的硫酸,且使溶液中铁元素完全沉淀,共消耗4mol/L的NaOH溶液150mL。则原硫酸的物质的量浓度为()
A. 1.5mol/L
B. 0.5mol/L
C. 2mol/L
D. 1.2mol/L
解析
粗看题目,这是一利用关系式进行多步计算的题目,操作起来相当繁琐,但如能仔细阅读题目,挖掘出隐蔽条件,不难发现,反应后只有Na2SO4存在于溶液中,且反应过程中SO42―并无损耗,根据电中性原则:n(SO42―)= n(Na+),则原硫酸的浓度为:2mol/L,故选C。
4. 得失电子守恒法
例5
某稀硝酸溶液中,加入5.6g铁粉充分反应后,铁粉全部溶解,生成NO,溶液质量增加3.2g,所得溶液中Fe2+和Fe3+物质的量之比为 ()
A. 4∶1
B. 2∶1
C. 1∶1
D. 3∶2
解析
设Fe2+为xmol,Fe3+为ymol,则:
x+y= =0.1(Fe元素守恒)
2x+3y= (得失电子守恒)
得:x=0.06mol,y=0.04mol。则x∶y=3∶2。故选D。
三、 关系式法
实际化工生产中以及化学工作者进行科学研究时,往往涉及到多步反应:从原料到产品可能要经过若干步反应;测定某一物质的含量可能要经过若干步中间过程。对于多步反应体系,依据若干化学反应方程式,找出起始物质与最终物质的量的关系,并据此列比例式进行计算求解方法,称为“关系式”法。利用关系式法可以节省不必要的中间运算步骤,避免计算错误,并能迅速准确地获得结果。用关系式解题的关键是建立关系式,建立关系式的方法主要有:1、利用微粒守恒关系建立关系式,2、利用方程式中的化学计量数间的关系建立关系式,3、利用方程式的加合建立关系式。
例6
工业上制硫酸的主要反应如下:
4FeS2+11O2 2Fe2O3+8SO2
2SO2+O2 2SO3
SO3+H2O=H2SO4
煅烧2.5t含85%FeS2的黄铁矿石(杂质不参加反应)时,FeS2中的S有5.0%损失而混入炉渣,计算可制得98%硫酸的质量。
解析
根据化学方程式,可以找出下列关系:FeS2~2SO2~2SO3~2H2SO4, 本题从FeS2制H2SO4,是同种元素转化的多步反应,即理论上FeS2中的S全部转变成H2SO4中的S。得关系式FeS2~2H2SO4。过程中的损耗认作第一步反应中的损耗,得可制得98%硫酸的质量是 =3.36 。
四、方程式叠加法
许多化学反应能发生连续、一般认为完全反应,这一类计算,如果逐步计算比较繁。如果将多步反应进行合并为一个综合方程式,这样的计算就变为简单。如果是多种物质与同一物质的完全反应,若确定这些物质的物质的量之比,也可以按物质的量之比作为计量数之比建立综合方程式,可以使这类计算变为简单。
例7
将2.1g由CO 和H2 组成的混合气体,在足量的O2 充分燃烧后,立即通入足量的Na2O2 固体中,固体的质量增加 A. 2.1g
B. 3.6g
C. 4.2g
D. 7.2g
解析 CO和H2都有两步反应方程式,量也没有确定,因此逐步计算比较繁。Na2O2足量,两种气体完全反应,所以将每一种气体的两步反应合并可得H2+Na2O2=2NaOH,CO+ Na2O2=Na2CO3,可以看出最初的气体完全转移到最后的固体中,固体质量当然增加2.1g。选A。此题由于CO和H2的量没有确定,两个合并反应不能再合并!
五、等量代换法
在混合物中有一类计算:最后所得固体或溶液与原混合物的质量相等。这类试题的特点是没有数据,思考中我们要用“此物”的质量替换“彼物”的质量,通过化学式或化学反应方程式计量数之间的关系建立等式,求出结果。
例8
有一块Al-Fe合金,溶于足量的盐酸中,再用过量的NaOH溶液处理,将产生的沉淀过滤、洗涤、干燥、灼烧完全变成红色粉末后,经称量,红色粉末的质量恰好与合金的质量相等,则合金中铝的质量分数为 ()
A. 70%
B. 30%
C. 47.6%
D. 52.4%
解析 变化主要过程为:
由题意得:Fe2O3与合金的质量相等,而铁全部转化为Fe2O3,故合金中Al的质量即为Fe2O3中氧元素的质量,则可得合金中铝的质量分数即为Fe2O3中氧的质量分数,O%= ×100%=30%,选B。
D. 高中化学常用的7种计算方法 我们老师老是说有7大计算方法,请高手们仔细说说!thanks )
化学计算常用方法
守恒法 利用反应体系中变化前后,某些物理量在始、终态时不发生变化的规律列式计算.主要有:(1)质量守恒;(2)原子个数守恒;(3)电荷守恒;(4)电子守恒;(5)浓度守恒(如饱和溶液中);(6)体积守恒;(7)溶质守恒;(8)能量守恒.
差量法 根据物质发生化学反应的方程式,找出反应物与生成物中某化学量从始态到终态的差量(标准差)和实际发生化学反应差值(实际差)进行计算.主要有:(1)质量差;(2)气体体积差;(3)物质的量差;(4)溶解度差……实际计算中灵活选用不同的差量来建立计算式,会使计算过程简约化.
平均值法 这是处理混合物中常用的一种方法.当两种或两种以上的物质混合时,不论以何种比例混合,总存在某些方面的一个平均值,其平均值必定介于相关的最大值和最小值之间.只要抓住这个特征,就可使计算过程简洁化.主要有:(1)平均相对分子质量法;(2)平均体积法;(3)平均质量分数法;(4)平均分子组成法;(5)平均摩尔电子质量法;(6)平均密度法;(7)平均浓度法……
关系式法 对于多步反应体系,可找出起始物质和最终求解物质之间的定量关系,直接列出比例式进行计算,可避开繁琐的中间计算过程.具体有:(1)多步反应关系法:对没有副反应的多步连续反应,可利用开始与最后某一元素来变建立关系式解题.(2)循环反应关系法:可将几个循环反应加和,消去其中某些中间产物,建立一个总的化学方程式,据此总的化学方程式列关系式解题.
十字交叉法 实际上是一种数学方法的演变,即为a1x1+a2x2=a平×(x1+x2)的变式,也可以转化为线段法进行分析.(1)浓度十字交叉法;(2)相对分子质量十字交叉法等.
极值法 当两种或多种物质混合无法确定其成分及其含量时,可对数据推向极端进行计算或分析,假设混合物质量全部为其中的某一成分,虽然极端往往不可能存在,但能使问题单一化,起到了出奇制胜的效果.常用于混合物与其他物质反应,化学平衡混合体系等计算.
讨论法 当化学计算中,不确定因素较多或不同情况下会出现多种答案时,就要结合不同的情况进行讨论.将不确定条件转化为已知条件,提出各种可能答案的前提,运用数学方法,在化学知识的范围内进行计算、讨论、推断,最后得出结果.主要有以下几种情况:(1)根据可能的不同结果进行讨论;(2)根据反应物相对量不同进行讨论;(3)运用不定方程或函数关系进行讨论.
估算法 有些化学计算题表面看来似乎需要进行计算,但稍加分析,不需要复杂计算就可以推理出正确的答案.快速简明且准确率高,适合于解某些计算型选择题.但要注意,这是一种特殊方法,适用范围不大.