① 什么是数值计算
数值计算指有效使用数字计算机求数学问题近似解的方法与过程,以及由相关理论构成的学科。
数值计算主要研究如何利用计算机更好的解决各种数学问题,包括连续系统离散化和离散形方程的求解,并考虑误差、收敛性和稳定性等问题。从数学类型分,数值运算的研究领域包括数值逼近、数值微分和数值积分、数值代数、最优化方法、常微分方程数值解法、积分方程数值解法、偏微分方程数值解法、计算几何、计算概率统计等。
随着计算机的广泛应用和发展,许多计算领域的问题,如计算物理、计算力学、计算化学、计算经济学等都可归结为数值计算问题。
(1)数值理论与计算方法扩展阅读:
构造数值积分公式最通常的方法是用积分区间上的n 次插值多项式代替被积函数,由此导出的求积公式称为插值型求积公式。特别在节点分布等距的情形称为牛顿-柯茨公式,例如梯形公式与抛物线公式就是最基本的近似公式。但它们的精度较差。
龙贝格算法是在区间逐次分半过程中,对梯形公式的近似值进行加权平均获得准确程度较高的积分近似值的一种方法,它具有公式简练、计算结果准确、使用方便、稳定性好等优点,因此在等距情形宜采用龙贝格求积公式。
当用不等距节点进行计算时,常用高斯型求积公式计算,它在节点数目相同情况下,准确程度较高,稳定性好,而且还可以计算无穷积分。数值积分还是微分方程数值解法的重要依据。许多重要公式都可以用数值积分方程导出。
② 有哪些值得推荐的《数值分析》(数值计算方法)教材或者参考书
有:李庆扬的《数值分析》 、喻文健 的《数值分析与算法》 、关治的《数值分析基础》。
数值分析,为数学的一个分支,是研究分析用计算机求解数学计算问题的数值计算方法及其理论的学科。它以数字计算机求解数学问题的理论和方法为研究对象,为计算数学的主体部分。数值分析的目的是设计及分析一些计算的方式,可针对一些问题得到近似但够精确的结果。
数值分析中,简单的问题是求出函数在某一特定数值下的值。直觉的方法是将数值代入函数中计算,不过有时此方式的效率不佳。像针对多项式函数的求值,较有效率的方式是秦九韶算法,可以减少乘法及加法的次数。若是使用浮点数,很重要的是是估计及控制舍入误差。
求解方程,首先会依方程式是否线性来区分,例如方程式 2x+5=3是线性方程式,而2x25=3是非线性方程式。此领域许多的研究都和求解线性方程组有关。直接法是线性方程组的系数以矩阵来表示。
再利用矩阵分解的方式求解,这些方法包括高斯消去法、LU分解,对于对称矩阵(或埃尔米特矩阵)及正定矩阵可以用乔莱斯基分解,非方阵的矩阵则可以用QR分解。迭代法有雅可比法、高斯–塞德迭代法、逐次超松驰法(SOR)及共轭梯度法,一般会用在大型的线性方程组中。
③ 数值计算方法的主要研究对象有哪些其常用基本算法主要包括哪三个方面
数值计算方法的主要研究对象:研究各种数学问题的数值方法设计、分析、有关的数学理论和具体实现。其常用基本算法在数值分析中用到迭代法的情形会比直接法要多。例如像牛顿法、二分法、雅可比法、广义最小残量方法及共轭梯度法等等。在计算矩阵代数中,大型的问题一般会需要用迭代法来求解。
许多时候需要将连续模型的问题转换为一个离散形式的问题,而离散形式的解可以近似原来的连续模型的解,此转换过程称为离散化。
例如求一个函数的积分是一个连续模型的问题,也就是求一曲线以下的面积若将其离散化变成数值积分,就变成将上述面积用许多较简单的形状(如长方形、梯形)近似,因此只要求出这些形状的面积再相加即可。
(3)数值理论与计算方法扩展阅读
数值分析也会用近似的方式计算微分方程的解,包括常微分方程及偏微分方程。
常微分方程往往会使用迭代法,已知曲线的一点,设法算出其斜率,找到下一点,再推出下一点的资料。欧拉方法是其中最简单的方式,较常使用的是龙格-库塔法。
偏微分方程的数值分析解法一般都会先将问题离散化,转换成有限元素的次空间。可以透过有限元素法、有限差分法及有限体积法,这些方法可将偏微分方程转换为代数方程,但其理论论证往往和泛函分析的定理有关。另一种偏微分方程的数值分析解法则是利用离散傅立叶变换或快速傅立叶变换。
④ 数值计算方法
一、数值的计算方法有:
1、有限元法
有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点。
一般的迭代方法可以迅速地将摆动误差衰减,但对那些低频分量,迭代法的效果不是很显着。
⑤ 数值计算方法概述
在采矿工程中,数值模拟方法不仅能模拟岩体复杂的力学和结构特征,还能很方便地解决现场监测过程中需要大量人力、物力而无法完成的、现有力学理论不能求解的复杂形体问题,并对矿山岩体稳定性进行预测与预报。
关于岩土工程的数值分析方法,很多学者都作过系统综述[53,68,72],笔者只拟简单介绍。岩土工程数值分析方法,主要分为三大类,如图7-1所示。
图7-1 边坡工程数值分析方法
(1)连续介质数值分析方法
连续介质数值分析方法的理论基础是弹(塑)性力学。因此,在该类数值分析方法公式的推导过程中,需要满足基本方程和边界条件。只是在求解手段上,采用了不同于弹性力学的各种近似解法。这类数值分析方法包括有限差分法、有限单元法和边界单元法等,它适用于连续介质体的地下工程围岩与结构的应力分析和位移求解。
(2)非连续介质数值分析方法
非连续介质数值分析方法的理论基础是牛顿运动定律,它并不满足结构的位移连续条件,但是可以求出结构在平衡状态下的位移或者在不可能处于平衡状态时的破坏模式。此外,尽管结构不受位移连续的约束,但应满足给定的单元和交界面的本构定律。这类数值分析方法主要有离散单元法和不连续变形分析(DDA)。这些数值分析方法可用于分析节理岩体可能发生的不连续变形,如洞室围岩附近岩块的分离与滑落等。
(3)混合介质数值分析方法
混合介质数值分析方法是连续和不连续分析方法的耦合。在地下结构的某些区域(如洞室附近),围岩体由于开挖影响而发生块体的分离而不连续,在另外区域(如远离洞室),则岩体一般仍相互联系而处于连续状态。因此,考虑两种不同力学介质的耦合分析很必要。目前常见的耦合方法有有限元与离散元的耦合、边界元与离散元的耦合等。混合介质吸取连续介质和非连续介质两种数值分析方法中的优点,在可能发生不连续变形的岩体,采用非连续介质方法模拟,而远离洞室的岩体一般仍处于连续状态,可采用连续介质模型分析。
本章分别采用有限元强度折减法、有限元和离散元相结合的CDEM法、FLAC差分法,开展安家岭露天矿露天井工联合开采的数值模拟分析,研究露天开采和井工开采的相互作用及影响规律。
⑥ 理工科为何要学习数值计算方法
是科学计算的核心理论和基本方法。它对培养学生的科学计算能力和解决实际问题的能力具有不可替代的作用。理工科为何要学习数值计算方法因为是科学计算的核心理论和基本方法。数值计算是以数学分析、高等代数等数学理论为基础,提出、发展、分析和应用适合于计算机上使用的科学计算方法的重要数学分支。
⑦ 传统的数值计算方法包括哪些内容现在的数值计算方法包括哪些内容
随着计算机和计算方法的飞速发展,几乎所有学科都走向定量化和精确化,从而产生了一系列计算性的学科分支,如计算物理、计算化学、计算生物学、计算地质学、计算气象学和计算材料学等,计算数学中的数值计算方法则是解决“计算”问题的桥梁和工具。我们知道,计算能力是计算工具和计算方法的效率的乘积,提高计算方法的效率与提高计算机硬件的效率同样重要。科学计算已用到科学技术和社会生活的各个领域中。
数值计算方法,是一种研究并解决数学问题的数值近似解方法, 是在计算机上使用的解数学问题的方法,简称计算方法。
在科学研究和工程技术中都要用到各种计算方法。 例如,在航天航空、地质勘探、汽车制造、桥梁设计、 天气预报和汉字字样设计中都有计算方法的踪影。
计算方法既有数学类课程中理论上的抽象性和严谨性,又有实用性和实验性的技术特征, 计算方法是一门理论性和实践性都很强的学科。 在70年代,大多数学校仅在数学系的计算数学专业和计算机系开设计算方法这门课程。 随着计算机技术的迅速发展和普及, 现在计算方法课程几乎已成为所有理工科学生的必修课程。
计算方法的计算对象是微积分,线性代数,常微分方程中的数学问题。 内容包括:插值和拟合、数值微分和数值积分、求解线性方程组的直接法和迭代法、 计算矩阵特征值和特征向量和常微分方程数值解等问题。
⑧ 数值计算方法
数字信号处理是把信号用数字或符号表示成序列,通过计算机或通用(专用)信号处理设备,用数值计算方法进行各种处理,达到提取有用信息便于应用的目的。例如:滤波、检测、变换、增强、估计、识别、参数提取、频谱分析等。
一般地讲,数字信号处理涉及三个步骤:
⑴模数转换(A/D转换):把模拟信号变成数字信号,是一个对自变量和幅值同时进行离散化的过程,基本的理论保证是采样定理。
⑵数字信号处理(DSP):包括变换域分析(如频域变换)、数字滤波、识别、合成等。
⑶数模转换(D/A转换):把经过处理的数字信号还原为模拟信号。通常,这一步并不是必须的。 作为DSP的成功例子有很多,如医用CT断层成像扫描仪的发明。它是利用生物体的各个部位对X射线吸收率不同的现象,并利用各个方向扫描的投影数据再构造出检测体剖面图的仪器。这种仪器中fft(快速傅里叶变换)起到了快速计算的作用。以后相继研制出的还有:采用正电子的CT机和基于核磁共振的CT机等仪器,它们为医学领域作出了很大的贡献。
信号处理的目的是:削弱信号中的多余内容;滤出混杂的噪声和干扰;或者将信号变换成容易处理、传输、分析与识别的形式,以便后续的其它处理。
⑨ 数值计算方法
1. 数值计算的结果是离散的,并且一定有误差,这是数值计算方法区别与解析法的主要特征。 2. 注重计算的稳定性。控制误差的增长势头,保证计算过程稳定是数值计算方法的核心任务之一。 3. 注重快捷的计算速度和高计算精度是数值计算的重要特征。 4. 注重构造性证明。 5.数值计算主要是运用MATLAB这个数学软件来解决实际的问题 6.数值计算主要是运用有限逼近的的思想来进行误差运算数值积分
⑩ 计算机专业本科的《数值计算方法》都讲了哪些内容
《数值计算方法》是数学类专业(如信息与计算专业、数学与应用数学专业)的专业基础课,主要包括数值逼近、数值代数和微分方程数值解三个部分。随着学分制改革的推进,该课程也可作为学校部分工科专业学生的选修课。以前我校面向部分工科专业学生开设的《计算方法》课程的大部分内容都包含在《数值计算方法》课程中。
随着计算机技术的发展和科学技术的进步,科学计算的应用范围已扩大到许多的学科领域,已经形成了一些边缘学科。例如,计算物理、计算力学、计算化学等。目前,实验、理论和计算已经成为了人们进行科学活动的三大方法。对从事工程与科学技术工作的人员,学习和掌握《数值计算方法》是非常必要的。
数值计算方法是数学的一个分支,但它又不象纯数学那样只研究数学本身的理论,而是把数学理论与计算方法紧密结合,既有纯数学高度抽象性的特点,又有应用的广泛性与实际试验的高度技术性的特点,是一门与计算机使用密切结合的实用性很强的数学课程,着重研究数学问题的数值方法及其理论。
http://www1.snut.e.cn/math/2007/reseach/math_web/