‘壹’ 电磁铁的磁力怎么算
我提供一个有点幼稚的做法吧,可以在弹簧秤下悬挂一个磁铁,记住弹簧秤的读数,再将你的电磁铁放在悬挂磁铁的下方,带到读数稳定了后记下读数,两者之差即为磁力大小。当然这里还得规定一下在多少距离的情况下是多少力,这样才有可比性。这个方法只能粗略的测小型电磁铁的磁力大小。
‘贰’ 初中物理电生磁是怎么回事
如果一条直的金属导线通过电流,那么在导线周围的空间将产生圆形磁场。导线中流过的电流越大,产生的磁场越强。磁场成圆形,围绕导线周围。
如果有两条通电的直导线相互靠近,会发生什么现象?我们首先假设两条导线的通电电流方向相反。那么,根据上面的说明,两条导线周围都产生圆形磁场,而且磁场的走向相反。在两条导线之间的位置会是什么情况呢?不难想象,在两条导线之间,磁场方向相同。这就好像在两条导线中间放置了两块磁铁,它们的N极和N极相对,S极和S极相对。由于同性相斥,这两条导线会产生排斥的力量。类似地,如果两条导线通过的电流方向相同,它们会互相吸引。
如果一条通电导线处于一个磁场中,由于导线也产生磁场,那么导线产生的磁场和原有磁场就会发生相互作用,使得导线受力。这就是电动机和喇叭的基本原理。
电和磁是不可分割的,它们始终交织在一起。简单地说,就是电生磁、磁生电。
(Tip:磁场的方向可以根据“右手螺旋定则”又称
“安培定则一”
来确定:用右手握住直导线,让大拇指指向电流的方向,那么其余四指弯曲的方向就是磁感线的环绕方向。实际上,这种直导线产生的磁场类似于在导线周围放置了一圈NS极首尾相接的小磁铁的效果。)
参考资料:搜狗网络http://ke..com/view/968555.htm
‘叁’ 初二物理 电生磁
电和磁是不可分割的,它们始终交织在一起。简单地说,就是电生磁、磁生电。
如果一条直的金属导线通过电流,那么在导线周围的空间将产生圆形磁场。导线中流过的电流越大,产生的磁场越强。
磁场大小用下面的公式计算:H=nI
在这个公式中,I是流过螺线管的电流,n是单位长度内的螺线管圈数。
手电筒电流小,又只相当与单匝线圈
所以磁场很小。。。。
‘肆’ 电生磁的量化计算是指
是在量子力学基础上发展起来的理论物理,量子化学及相关计算。
电生磁就是用一条直的金属导线通过电流,那么在导线周围的空间将产生圆形磁场。导线中流过的电流越大,产生的磁场越强。磁场成圆形,围绕导线周围。
磁场的方向可以根据“右手螺旋定则”又称“安培定则一”来确定:用右手握住直导线,让大拇指的方向指向电流的方向,那么四指弯曲的方向就是磁场方向。实际上,这种直导线产生的磁场类似于在导线周围放置了一圈NS极首尾相接的小磁铁的效果。
‘伍’ 初中物理电生磁是怎么回事
你好,电生磁结论出自奥斯特实验
基本上就是一根通电导线附近会产生围绕其的磁场,磁场方向用右手螺旋定则判断
下面是网络的释义
网络:如果一条直的金属导线通过电流,那么在导线周围的空间将产生圆形磁场。导线中流过的电流越大,产生的磁场越强。磁场成圆形,围绕导线周围。
奥斯特实验表明通电导线周围和永磁体周围一样都存在磁场·奥斯特实验揭示了一个十分重要的本质——电流周围存在磁场,电流是电荷定向运动产生的,所以通电导线周围的磁场实质上是运动电荷产生的。
这就是电生磁的最基本体现
希望可以帮到你,欢迎追问:)
‘陆’ 求电生磁的公式。
电生磁 ,磁场的方向可以根据“右手定则”来确定:用右手握住直导线,让大拇指指向电流的方向,那么其余四指弯曲的方向就是磁感线的环绕方向。实际上,这种直导线产生的磁场类似于在导线周围放置了一圈NS极首尾相接的小磁铁的效果。 如果将一条长长的金属导线在一个空心筒上沿一个方向缠绕起来,形成的物体我们称为螺线管。如果使这个螺线管通电,那么会怎样?通电以后,螺线管的每一匝都会产生磁场,磁场的方向如图2中的圆形箭头所示。那么,在相邻的两匝之间的位置,由于磁场方向相反,总的磁场相抵消;而在螺线管内部和外部,每一匝线圈产生的磁场互相叠加起来,最终形成了如图2所示的磁场形状。也可以看出,在螺线管外部的磁场形状和一块磁铁产生的磁场形状是相同的。而螺线管内部的磁场刚好与外部的磁场组成闭合的磁力线。电生磁的一个应用实例是实验室常用的电磁铁。为了进行某些科学实验,经常用到较强的恒定磁场,但只有普通的螺线管是不够的。为此,除了尽可能多地绕制线圈以外,还采用两个相对的螺线管靠近放置,使得它们的N、S极相对,这样两个线包直接就产生了一个较强的磁场。另外,还在线包中间放置纯铁(称为磁轭),以聚集磁力线,增强线包中间的磁场, 对于一个很长的螺线管,其内部的磁场大小用下面的公式计算:H=nI 在这个公式中,I是流过螺线管的电流,n是单位长度内的螺线管圈数。 如果有两条通电的直导线相互靠近,会发生什么现象?我们首先假设两条导线的通电电流方向相反,图5(a)所示。那么,根据上面的说明,两条导线周围都产生圆形磁场,而且磁场的走向相反。在两条导线之间的位置会是什么情况呢?不难想象,在两条导线之间,磁场方向相同。这就好象在两条导线中间放置了两块磁铁,它们的N极和N极相对,S极和S极相对。由于同性相斥,这两条导线会产生排斥的力量。类似地,如果两条导线通过的电流方向相同,它们会互相吸引。 如果一条通电导线处于一个磁场中,由于导线也产生磁场,那么导线产生的磁场和原有磁场就会发生相互作用,使得导线受力。这就是电动机和喇叭的基本原理。 电和磁是不可分割的,它们始终交织在一起。简单地说,就是电生磁、磁生电。
‘柒’ 电生磁的概念
电生磁就是用一条直的金属导线通过电流,那么在导线周围的空间将产生圆形磁场。导线中流过的电流越大,产生的磁场越强。磁场成圆形,围绕导线周围。
磁场的方向可以根据“右手螺旋定则”又称 “安培定则一” 来确定:用右手握住直导线,让大拇指的方向指向电流的方向,那么四指弯曲的方向就是磁场方向。实际上,这种直导线产生的磁场类似于在导线周围放置了一圈NS极首尾相接的小磁铁的效果。
如果将一条长长的金属导线在一个空心筒上沿一个方向缠绕起来,形成的物体我们称为螺线管。如果使这个螺线管通电,那么会怎样?通电以后,螺线管的每一匝都会产生磁场,磁场的方向“安培定则二”:用右手握住通电螺线管,让四指指向电流的方向,那么大拇指所指的那一端是通电螺线管的N极。那么,在相邻的两匝之间的位置,由于磁场方向相反,总的磁场相抵消;而在螺线管内部和外部,每一匝线圈产生的磁场互相叠加起来,在螺线管外部的磁场形状和一块磁铁产生的磁场形状是相同的。而螺线管内部的磁场刚好与外部的磁场组成闭合的磁力线。
电生磁的一个应用实例是实验室常用的电磁铁。为了进行某些科学实验,经常用到较强的恒定磁场,但只有普通的螺线管是不够的。为此,除了尽可能多地绕制线圈以外,还采用两个相对的螺线管靠近放置,使得它们的N、S极相对,这样两个线包之间就产生了一个较强的磁场。另外,还在线包中间放置纯铁(称为磁轭),以聚集磁力线,增强线包中间的磁场,
对于一个螺线管,其内部的磁场大小用下面的公式计算:B=μ0IN/L
在这个公式中,I是流过的电流,N螺线管圈数, μ0是常数,大小上等于4π×10^-7,L是通电螺线管的长度。
法拉第提出了电磁感应定律,使得电与磁就连成一体了。19世纪中叶,麦克斯韦提出了统一的电磁场理论,实现了物理学的第二次大综合。电磁 定律与力学规律有一个截然不同的地方。根据牛顿的设想,力学考虑的相互作用,特别是万有引力相互作用,是超距的相互作用,没有力的传递问题(当然,用现代观点看,引力也应该有传递问题),而电磁相互作用是场的相互作用。从粒子的超距作用到电磁场的“场的相互作用”,这在观念上有很大变化。场的效应被突出出来了。电场与磁场不断相互作用造成电磁波的传播,这一点由赫兹在实验室中证实了。电磁波不但包括无线电波,实际上包括很宽的频谱,其中很重要的一部分就是光波。光学在过去是与电磁学完全分开发展的,麦克斯韦电磁理论建立以后,光学也变成了电磁学的一个分支了,电学、磁学和光学得到了统一。
‘捌’ 求所有关于电生磁的公式
1、安培力:
通电导线在磁场中受到的作用力。电流为I、长为L的直导线。在匀强磁场B中受到的安培力大小为:F=ILBsinα,其中α为(I,B),是电流方向与磁场方向间的夹角。
2、洛伦兹力:
F=qVB(注V⊥B);质谱仪{f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)};运动电荷在磁场中所受到的力称为洛伦兹力,即磁场对运动电荷的作用力。
洛伦兹力的性质:
1、在国际单位制中,洛仑兹力的单位是牛顿,符号是N。
2、洛伦兹力方向总与运动方向垂直。
3、洛伦兹力永远不做功。(有束缚时,洛仑兹力的分力可以做功,但其总功一定为0。)
(8)电生磁计算方法扩展阅读:
电生磁的原理介绍:
如果一条直的金属导线通过电流,那么在导线周围的空间将产生圆形磁场。导线中流过的电流越大,产生的磁场越强。磁场成圆形,围绕导线周围。
磁场的方向可以根据“右手定则”来确定:将右手拇指伸出,其余四指并拢弯向掌心。这时,拇指的方向为电流方向,而其余四指的方向是磁场的方向。实际上,这种直导线产生的磁场类似于在导线周围放置了一圈N、S极首尾相接的小磁铁的效果。
‘玖’ 电生磁的公式
、磁场 1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A?m 2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)} 3.洛仑兹力f=qVB(注V⊥B);质谱仪{f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)} 4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种): (1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0 (2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB ;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下); ©解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。 注:(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负; (2)磁感线的特点及其常见磁场的磁感线分布要掌握; (3)其它相关内容:地磁场/磁电式电表原理/回旋加速器/磁性材料 电磁感应 1.[感应电动势的大小计算公式] 1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率} 2)E=BLV垂(切割磁感线运动) {L:有效长度(m)} 3)Em=nBSω(交流发电机最大的感应电动势) {Em:感应电动势峰值} 4)E=BL2ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),V:速度(m/s)} 2.磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)} 3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极} *4.自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大), ΔI:变化电流,?t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)} 注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点; (2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H=103mH=106μH。 (4)其它相关内容:自感/日光灯。
F.context('edit-answer',{
con: '八、磁场 1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A?m 2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)} 3.洛仑兹力f=qVB(注V⊥B);质谱仪{f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)} 4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种): (1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0 (2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB ;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下); ©解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。 注:(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负; (2)磁感线的特点及其常见磁场的磁感线分布要掌握; (3)其它相关内容:地磁场/磁电式电表原理/回旋加速器/磁性材料 电磁感应 1.[感应电动势的大小计算公式] 1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率} 2)E=BLV垂(切割磁感线运动) {L:有效长度(m)} 3)Em=nBSω(交流发电机最大的感应电动势) {Em:感应电动势峰值} 4)E=BL2ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),V:速度(m/s)} 2.磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)} 3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极} *4.自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大), ΔI:变化电流,?t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)} 注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点; (2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H=103mH=106μH。 (4)其它相关内容:自感/日光灯。'
,rich:'0'
});