1. 如何用留数计算
分享一种解法。设f(z)=1/(z²sinz)。显然,在丨z丨=1的域内,z=0是其一个三阶极点。
∵sinz=z-z³/6+z^5/(5!)+…+[(-1)^n]z^(2n+1)/[(2n+1)!]+…,n=0,1,2,…,∞,
∴f(z)=(1/z³)/∑[(-1)^n]z^(2n)/[(2n+1)!]。
而,1/∑[(-1)^n]z^(2n)/[(2n+1)!]=1/[1-z²/6+z^4/(5!)+…]=1+z²/6+7z^4/360+…,
根据留数的定义,n=-1时,系数an即f(z)的留数。∴Res[f(z),0]=1/6。
∴由柯西积分定理,原式=(2πi)Res[f(z),0]=πi/3。
供参考。
2. 复变函数(留数的计算)
由于被积函数f(z)=tanπz=sinπz/cosπz的奇点是分母等于0的点,而使分母cosπz=0又在c:|z|=1内的点只有l两个点:
z=1/2和z=-1/2;再根据孤立奇点的分类判定可知:z=1/2和z=-1/2是被积函数f(z)=tanπz的一级极点.
利用一级极点求留数的方法可以知道:
Res(tanπz,1/2)=- sin(π/2)/[πsin(π/2)]=-1/π;
Res(tanπz,-1/2)=- sin(-π/2)/[πsin(-π/2)]=-1/π;
因此利用留数基本定理可知:
∮tanπzdz=2πi [Res(tanπz,1/2)+Res(tanπz,-1/2)]
=2πi [-1/π+(-1/π)]
=-4i.
祝周末愉快!
3. 用留数方法计算复积分
∮c (2z^2-z+1)/(z^2-1)dz
=(2Pi*i)(Res[(2z^2-z+1),1]+Res[2z^2-z+1,-1])}
=(2Pi*i)(2+4)}
= 12Pi*i
4. 利用留数方法计算
5. 复变函数 关于留数的计算
两种都可以啊,
结果也都是-1
第一种,
Res(2kπi)=lim(z->2kπi) (z-2kπi)/(1-e^z)=lim(z->2kπi) 1/(-e^z)= -1
其中k=0,±1、、、、、、、、
第二种,p(z)=1,q(z)=1-e^z
直接带入后可得到留数为-1
6. 利用留数方法计算这个积分
7. 利用留数法计算拉普拉斯逆变换,为什么逆变
如图所示:
8. 留数计算法求Z变换
在c内(|z|=2),z=0是f(z)=[ln(1+z)]/z的孤立奇点,但z=-1不是f(z)的孤立奇点,ln(1+z)在z=-1以及小于-1的负实轴上不解析,所以f(z)在z=-1以及小于-1的负实轴上也不解析,所以无法应用留数定理计算积分∮f(z)dz,自然也无法计算f(z)在-1处的留数res[f(z),-1]。
9. 留数法是什么
留数法是复变函数中的一个重要概念。指解析函数沿着某一圆环域内包围某一孤立奇点的任一正向简单闭曲线的积分值除以2πi。留数数值上等于解析函数的洛朗展开式中负一次幂项的系数。根据孤立奇点的不同,采用不同的留数计算方法。留数常应用在某些特殊类型的实积分中,从而大大简化积分的计算过程。
数学:
数学是研究数量、结构、变化、空间以及信息等概念的一门学科。数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。