导航:首页 > 计算方法 > 双曲线实轴的计算方法

双曲线实轴的计算方法

发布时间:2023-01-29 03:17:46

❶ 双曲线怎么求值

双曲线x²/a²-y²/b²=1,其中a代表双曲线顶点到原点的距离(实半轴),b代表双曲线的虚半轴,c代表焦点到原点的距离(半焦距),a,b,c满足关系式a²+b²=c²。

其中:OA1=a,OB1=b,OF1=c。O为原点。

我们把平面内与两个定点F1,F2的距离的差的绝对值等于一个常数(常数为2a,小于|F1F2|)的轨迹称为双曲线;平面内到两定点的距离差的绝对值为定长的点的轨迹叫做双曲线),即:│|PF1|-|PF2│|=2a。

相关信息:

双曲线的其他概念:

(1)A(-a,0),A'(a,0)。同时AA'叫做双曲线的实轴且│AA'│=2a。

(2)B(0,-b),B'(0,b)。同时BB'叫做双曲线的虚轴且│BB'│=2b。

(3)F1(-c,0)或(0,-c),F2(c,0)或(0,c)。F1为双曲线的左焦点,F2为双曲线的右焦点且│F1F2│=2c。

(4)离心率,第一定义:e=c/a且e∈(1,+∞)。

❷ 双曲线的实轴虚轴顶点和焦点坐标怎么求

双曲线的方程为x^2/a^2-y^2/b^2=1这一种。

实轴为2a,虚轴为2b,顶点为(a,0)与(-a,0) 焦点坐标(c,0)与(-c,0)。

这里只讨论焦点在x轴上的情况。

固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。a还叫做双曲线的实半轴。焦点位于贯穿轴上,它们的中间点叫做中心,中心一般位于原点处。

(2)双曲线实轴的计算方法扩展阅读:

双曲线的每个分支具有从双曲线的中心进一步延伸的更直(较低曲率)的两个臂。对角线对面的手臂,一个从每个分支,倾向于一个共同的线,称为这两个臂的渐近线。所以有两个渐近线,其交点位于双曲线的对称中心。

平面内,到给定一点及一直线的距离之比为常数e((e>1),即为双曲线的离心率)的点的轨迹称为双曲线。定点叫双曲线的焦点,定直线叫双曲线的准线。双曲线准线的方程为(焦点在x轴上)或(焦点在y轴上)。

一平面截一圆锥面,当截面与圆锥面的母线不平行也不通过圆锥面顶点,且与圆锥面的两个圆锥都相交。

给定同侧的一个焦点,一条准线以及离心率可以根据定义2同时得到双曲线的两支,而两侧的焦点,准线和相同离心率得到的双曲线是相同的。

❸ 双曲线的实轴这么求啊

化为标准方程x^2/a^2-y^2/b^2=1或者是y2/a2-x2/b2=1,则实轴长为2a
如x2/9-y2/2=1,a2=9,a=3,长轴为6

❹ 双曲线的实轴长怎么求

16x^2-9y^2=-144 方程两边同除以-144:
y²/16 - x²/9 =1
所以实轴长2b=2√16=8,半焦距c=√(16+9)=5,焦点坐标(0,5)和(0,-5)
离心率e=c/b=5/4
渐近线方程4x±3y=0

❺ 双曲线的公式是什么

标准方程为:

1、焦点在X轴上时为:双曲线y上一点与两顶点连线的斜率之积为。

参考资料:网络---双曲线

❻ 双曲线的实轴虚轴顶点和焦点坐标怎么求

解:双曲线的方程为x^2/a^2-y^2/b^2=1这一种
实轴为2a
虚轴为2b
顶点为(a,0)与(-a,0)
焦点坐标(c,0)与(-c,0)
这里只讨论焦点在x轴上的情况
如有不懂,可追问!

❼ 高中数学有关于双曲线的公式

定义4:在平面直角坐标系中,二元二次方程f(x,y)=ax^2+bxy+cy^2+dx+ey+f=0满足以下条件时,其图像为双曲线.
1.a、b、c不都是零.
2.b^2 - 4ac > 0.
3.a^2+b^2=c^2
在高中的解析几何中,学到的是双曲线的中心在原点,图像关于x,y轴对称的情形.这时双曲线的方程退化为:x^2/a^2 - y^2/b^2 = 1.
上述的四个定义是等价的,并且根据建好的前后位置判断图像关于x,y轴对称.
2 标准方程编辑本段
1,焦点在X轴上时为:
x^2/a^2 - y^2/b^2 = 1
2,焦点在Y 轴上时为:
y^2/a^2 - x^2/b^2 = 1
3 主要特点编辑本段
3.1 1、轨迹上一点的取值范围:
│x│≥a(焦点在x轴上)或者│y│≥a(焦点在y轴上).
3.2 2、对称性:
关于坐标轴和原点对称.
3.3 3、顶点:
A(-a,0),A'(a,0).同时 AA'叫做双曲线的实轴且│AA'│=2a.
B(0,-b),B'(0,b).同时 BB'叫做双曲线的虚轴且│BB'│=2b.
F1(-c,0)F2(c,0).F1为双曲线的左焦点,F2为双曲线的右焦点且│F1F2│=2c
对实轴、虚轴、焦点有:a^2+b^2=c^2
3.4 4、渐近线:
焦点在x轴:y=±(b/a)x.
焦点在y轴:y=±(a/b)x.圆锥曲线ρ=ep/1-ecosθ当e>1时,表示双曲线.其中p为焦点到准线距离,θ为弦与x轴夹角.
令1-ecosθ=0可以求出θ,这个就是渐近线的倾角.θ=arccos(1/e)
令θ=0,得出ρ=ep/(1-e),x=ρcosθ=ep/(1-e)
令θ=PI,得出ρ=ep/(1+e),x=ρcosθ=-ep/(1+e)
这两个x是双曲线定点的横坐标.
求出它们的中点的横坐标(双曲线中心横坐标)
x=[(ep/1-e)+(-ep/1+e)]/2
(注意化简一下)
直线ρcosθ=[(ep/1-e)+(-ep/1+e)]/2
是双曲线一条对称轴,注意是不与曲线相交的对称轴.
将这条直线顺时针旋转PI/2-arccos(1/e)角度后就得到渐近线方程,设旋转后的角度是θ’
则θ’=θ-[PI/2-arccos(1/e)]
则θ=θ’+[PI/2-arccos(1/e)]
代入上式:
ρcos{θ’+[PI/2-arccos(1/e)]}=[(ep/1-e)+(-ep/1+e)]/2
即:ρsin[arccos(1/e)-θ’]=[(ep/1-e)+(-ep/1+e)]/2
现在可以用θ取代式中的θ’了
得到方程:ρsin[arccos(1/e)-θ]=[(ep/1-e)+(-ep/1+e)]/2
现证明双曲线x^2/a^2-y^2/b^2=1 上的点在渐近线中
设M(x,y)是双曲线在第一象限的点,则
y=(b/a)√(x^2-a^2) (x>a)
因为x^2-a^20)
而反比例函数的标准型是 xy = c (c ≠ 0)
但是反比例函数图象确实是双曲线轨迹经过旋转得到的
因为xy = c的对称轴是 y=x,y=-x 而X^2/a^2 - Y^2/b^2 = 1的对称轴是x轴,y轴
所以应该旋转45度
设旋转的角度为 a (a≠0,顺时针)
(a为双曲线渐进线的倾斜角)
则有
X = xcosa + ysina
Y = - xsina + ycosa
取 a = π/4

X^2 - Y^2 = (xcos(π/4) + ysin(π/4))^2 -(xsin(π/4) - ycos(π/4))^2
= (√2/2 x + √2/2 y)^2 -(√2/2 x - √2/2 y)^2
= 4 (√2/2 x) (√2/2 y)
= 2xy.
而xy=c
所以
X^2/(2c) - Y^2/(2c) = 1 (c>0)
Y^2/(-2c) - X^2/(-2c) = 1 (c1;
在双曲线的线上称为双曲线上,则有x^2/a^2-y^2/b^2=1;
在双曲线所夹的区域称为双曲线外,则有x^2/a^2-y^2/b^2

❽ 双曲线的实轴和虚轴

双曲线中实轴等于2a,虚轴等于2b。

若为焦点在x轴上的双曲线,在x轴上的两焦点之间的距离长等于2a,也就是是双曲线的实轴,是双曲线两支中相距最近的点,相对应的2b就是虚轴。

实轴长是指到定点的距离差为定长的常数,它的一半就是指所谓的表达式中的a,而虚轴长没有什么实际意义,往往和实轴一起用来讨论渐进线,它的一半就是所谓的表达式中的b。

(8)双曲线实轴的计算方法扩展阅读

它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。

a还叫做双曲线的实半轴。焦点位于贯穿轴上,它们的中间点叫做中心,中心一般位于原点处。

❾ 双曲线的实轴长怎么求 16x^2-9y^2=-144 求实轴长,焦点坐标,离心率和渐近线方程……

16x^2-9y^2=-144 方程两边同除以-144:
y²/16 - x²/9 =1
所以实轴长2b=2√16=8,半焦距c=√(16+9)=5,焦点坐标(0,5)和(0,-5)
离心率e=c/b=5/4
渐近线方程4x±3y=0

❿ 双曲线有几条虚轴实轴的长度

双曲线的实轴和虚轴分别是:X轴为实轴,y轴为虚轴。

两顶点之间的线段称为双曲线的实轴,实轴长的一半称为半实轴,实轴的长度为2a(a为标准方程中的参数)。在标准方程中令x=0,得y=-b,该方程无实根,为便于作图,在y轴上画出B1(0,b)和B2(0,-b),以B1B2为虚轴。

把平面内与两个定点F1,F2的距离的差的绝对值等于一个常数(常数为2a,小于|F1F2|)的轨迹称为双曲线;平面内到两定点的距离差的绝对值为定长的点的轨迹叫做双曲线。

学好几何的方法

1、使用教具,小学生的思维能力、逻辑能力还在形成阶段,对于课本中的理论,单凭文字叙述,很难建立起清晰的表象,在学习几何过程中,不妨通过教具来做更好的理解。

2、培养兴趣,兴趣是最好的老师,很多学生在最初遇见数学时是产生极大兴趣的,但是为何后来开始慢慢讨厌数学了呢?很大程度原因是因为挫败感,当学生算错数、做错题了,家长第一反应是批评、责怪,孩子久而久之就开始逃避数学学习了。

3、思维形成,数学问题是错综复杂的,几何更甚。然而,几何的解题方法尤其简单,原因是因为几何是有规定的解题步骤可循的,只要按照解题步骤一步一步做下去,最终都能获得答案。

阅读全文

与双曲线实轴的计算方法相关的资料

热点内容
套褥子快速方法 浏览:923
如何突破思维障碍的方法的理解 浏览:671
抬头纹太深了用什么方法能去掉 浏览:771
薄层色谱检验方法有哪些 浏览:480
急性结膜炎的治疗方法 浏览:856
如何使用电动牙刷的方法 浏览:797
汽车玻璃正确方法视频 浏览:906
分析经济学的方法 浏览:894
共线向量解决方法 浏览:51
手机wifi信号增强安装方法 浏览:585
公顷的计算方法 浏览:860
做实验的问题及解决方法 浏览:33
流产的种类和治疗方法 浏览:484
桑黄茵的种植方法 浏览:84
快速摘蘑菇方法 浏览:183
iphone键盘语音设置在哪里设置方法 浏览:956
粉叶玉凤兰块茎食用方法 浏览:990
失眠最快的方法视频 浏览:539
6598怎么用简便方法算 浏览:231
不加水蒸蛋的制作方法和步骤 浏览:670