A. 请问叉乘是如何运算的
向量的叉乘运算法则为|向量c|=|向量a×向量b|=|a||b|sin<a,b>,向量的外积不遵守乘法交换率,因为向量a×向量b=-向量b×向量a。
点乘,也叫向量的内积、数量积。顾名思义,求下来的结果是一个数。
向量a·向量b=|a||b|cos<a,b>
(1)叉乘法计算方法扩展阅读:
定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。
在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。
B. 连续叉乘公式
叉乘公式是a×(b×c)=b(ac)−c(ab),向量积,数学中又称外积,叉积,物理中称矢积,叉乘,是一种在向量空间中向量的二元运算,它的运算结果是一个向量而不是一个标量。
在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。
矩阵相乘最重要的方法是一般矩阵乘积。它只有在第一个矩阵的列数(column)和第二个矩阵的行数(row)相同时才有意义。
一般单指矩阵乘积时,指的便是一般矩阵乘积。一个m×n的矩阵就是m×n个数排成m行n列的一个数阵。由于它把许多数据紧凑地集中到了一起,所以有时候可以简便地表示一些复杂的模型,如电力系统网络模型。