㈠ 四阶行列式,求计算方法 第一小题
高阶行列式的计算首先是要降低阶数。
对于n阶行列式A,可以采用按照某一行或者某一列展开的办法降阶,一般都是第一行或者第一列。因为这样符号好确定。这是总体思路。
当然还有许多技巧,就是比如,把行列式中尽量多出现0,比如:
2 -3 0 2
1 5 2 1
3 -1 1 -1
4 1 2 2
=#把第二行分别乘以-2,-3,-4加到第1、3、4行
0 -13 -4 0
1 5 2 1
0 -16 -5 -4
0 -19 -6 -2
=整理一下
1 5 2 1
0 13 4 0
0 16 5 4
0 19 6 2
=把第四行乘以-2加到第三行
1 5 2 1
0 13 4 0
0 -22 -7 0
0 19 6 2
=按照第一列展开
13 4 0
-22 -7 0
19 6 2
=按照最后一列展开
13 4
22 7 *(-2)
=【13*7-22*4】*(-2)
=-6
希望能帮到你
㈡ 谁能告诉我计算行列式的常用方法、最好有例题
计算行列式,最重要的就是要细心。慢慢来,其实行列式很简单,但却是丢分最厉害的,因为只要一处错就全错了。行列式的计算就是那几个公式。
㈢ 行列式计算题 想要详细过程
第五题,行列式的值等于某一行(列)的元素与该元素的代数余子式乘积之和。如果这一行(列)的元素换成另一行(列)的元素和原来那行(列)元素的代数余子式乘积之和,那么,将这个乘积和重新返回写成行列式的形式,就会得到一个新的行列式,这个行列式有两行(列)的元素是一样的,那么这个行列式的值就是〇,所以第五题的那个乘积和等于0。
第六题,这需要计算四个三阶行列式之值,这四个代数余子式分别为
A[4,1]=(2×4×7+3×4×5+4×6×3-2×6×4-3×3×7-4×4×5)(-1)^(4+1)=-(56+60+72-48-63-80)=3,
A[4,2]=(1×4×7+3×4×1+4×6×3-1×4×6-3×3×7-1×4×4)(-1)^(4+2)=28+12+72-24-63-16=9,
A[4,3]=(1×3×7+2×4×1+4×5×3-1×5×4-2×3×7-1×4×4)(-1)^(4+3)=-(21+8+60-20-42-16)=-9,
A[4,4]=(1×3×6+2×4×1+3×5×3-1×5×4-2×3×6-1×3×3)(-1)^(4+2)=18+8+45-20-36-9=6,
所以A[4,1]+A[4,2]=3+9=12,
A[4,3]+A[4,4]=-9+6=-3。
㈣ 求解几道线性代数(行列式)的计算题
第1题,所有列加到第1列
然后第1列,减去第n+1列的a1+a2+...+an-1+x倍
再按第1列展开,进行降阶
第2题,按第1行展开,得到2个行列式,其中1个行列式是n-1阶,另一个再按第1列展开,得到n-2阶的下三角行列式,于是可以得到递推式
第3题,用初等行变换,将所有行逆序后,得到范德蒙行列式,套公式
第4题
可以参考下列解法:
㈤ 行列式计算方法问题
你再好好看看课本
行列式是对应于n阶方阵的,n行m列的矩阵没有相应的行列式
㈥ 4阶行列式的计算方法
四阶行列式的计算方法:
第1步:把2、3、4列加到第1 列,提出第1列公因子 10,化为
1 2 3 4
1 3 4 1
1 4 1 2
1 1 2 3
第2步:第1行乘 -1 加到其余各行,得
1 2 3 4
0 1 1 -3
0 2 -2 -2
0 -1 -1 -1
第3步:r3 - 2r1,r4+r1,得
1 2 3 4
0 1 1 -3
0 0 -4 4
0 0 0 -4
所以行列式 = 10* (-4)*(-4) = 160。
(6)行列式的计算方法及例题扩展阅读:
性质
①行列式A中某行(或列)用同一数k乘,其结果等于kA。
②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
④行列式A中两行(或列)互换,其结果等于-A。 ⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。
㈦ 行列式的计算例题
由爪形行列式的公式:D=x1x2...xn(x0-1/x1-1/x2-...-1/xn)
也可以
r1-r2/x1-r3/x2-...-r(n+1)/xn
化为【下三角】型,第一行除第一个元素外全
0
,第一个元素成为
x0-1/x1-1/x2-...-1/xn,主对角线元素乘积即为
D=(x0-1/x1-1/x2-...-1/xn)*x1x2...xn
㈧ 行列式计算题
首先用每一行的元素分别减去第二行的元素可以得到:
-1 0 0 … … … 0
2 2 2 … … … 0
0 0 1 … … … 0
0 0 0 2 … … 0
… … … … … …
… … … … … …
0 0 0 … … … n-2
可以利用代数余子式解出:(-1)*2*(n-2)!
希望我的回答能帮助你!
㈨ 4阶行列式的计算方法,简单解题方法!!!
4阶行列式的计算方法:
第1步:把2、3、4列加到第1 列,提出第1列公因子 10,化为
1 2 3 4
1 3 4 1
1 4 1 2
1 1 2 3
第2步:第1行乘 -1 加到其余各行,得
1 2 3 4
0 1 1 -3
0 2 -2 -2
0 -1 -1 -1
第3步:r3 - 2r1,r4+r1,得
1 2 3 4
0 1 1 -3
0 0 -4 4
0 0 0 -4
所以行列式 = 10* (-4)*(-4) = 160。
(9)行列式的计算方法及例题扩展阅读:
性质:
性质1行列式与它的转置行列式相等。
性质2互换行列式的两行(列),行列式变号。
推论如果行列式有两行(列)完全相同,则此行列式为零。
性质3行列式的某一行(列)中所有的元素都乘以同一数k,等于用数k乘此行列式。
推论行列式中某一行(列)的所有元素的公因子可以提到行列式符号的外面。
性质4行列式中如果有两行(列)元素成比例,则此行列式等于零。
性质5把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。