① 如何计算一个数的平方根
平方根的计算方法计算方法一:我们用a来表示A的平方根,方程x-a=0的解就为A的平方根a。两边平方后有:x*x-2ax+A=0,因为x不等于0,两边除以x有:x-2a+A/x=0、a=(x+A/x)/2所以你只需设置一个约等于(x+A/x)/2的初始值,代入上面公式,可以得到一个更加近似的值。再将它代入,又可以得到一个更加精确的值……依此方法,最后得到一个足够精度的(x+A/x)/2的值即为A的平方根值。真的是这样吗?假设我们代入的值x﹤a
由于这里考虑a﹥0故:x*x﹤a*a
即x﹤A/x(x+A/x)/2﹥(x+x)/2
即(x+A/x)/2>x
即当代入的x﹤a时(x+A/x)/2的值将比x大。同样可以证明当代入的x﹥a时(x+A/x)/2的值将比x小。这样随着计算次数的增加,(x+A/x)/2的值就越来越接近a的值了。如:计算sqrt(5)
设初值为x
=
2
第一次计算:(2+5/2)/2=2.25
第二次计算:(2.25+5/2.25)/2=2.236111
第三次计算:(2.236111+5/2.236111)/2=2.236068
这三步所得的结果和5
的平方根值相差已经小于0.001
了。
计算方法二:我们可以使用二分法来计算平方根。设f(x)=x*x
-
A同样设置a为A的平方根,哪么a就是f(x)=0的根。你可以先找两个正值m,n使f(m)<0,f(n)>0
根据函数的单调性,a就在区间(m,n)间。然后计算(m+n)/2,计算f((m+n)/2),如果它大于零,那么a就在区间(m,(m+n)/2)之间。小于零,就在((m+n)/2,n)之间,如果等于零,那么(m+n)/2当然就是a。这样重复几次,你可以把a存在的范围一步步缩小,在最后足够精确的区间内随便取一个值,它就约等于a。计算方法三:以上的方法都不是很直接,在上世纪80年代的初中数学书上,都还在介绍一种比较直接的计算方法:(1)如求54756的算术平方根时先由个位向左两位两位地定位:定位为5,47,56,接着象一般除法那样列出除式.(2)先从最高位用最大平方数试商:最大平方数不超过5的是2,得商后,除式5-4后得1。把商2写上除式上。(3)加上下一位的数:得147。(4)用20去乘商后去试商147:2×20=40
这40可试商为3,那就把试商的3加上40去除147。得147÷43=3,把3写上除式上。这时147-129=18。(5)加上下一位的数:得1856。(6)用20去乘商后去试商1856:23×20=460
这460可试商为4,那就把试商的4加到460去除1856。得4,把4写上除式上。这时1856-1856=0,无余数啦。(7)这时除式上的商是234,即是54756的平方根。哪么这种计算方法是怎么得来的呢?查找了好久都没有找到答案。静下心来仔细分平方根的计算过程,后来的步骤都有20乘以也有的商再加上预计的商乘上预计的商。设也有的商为a预计的商为b就是(20*a+b)*b即20ab+b*b。而实质上预计的商是平方根中已有的商的后一位数字,平方根实际为10a+b再乘以10的N次方(N为整数),这里我们可以简化为平方根为10a+b(因为乘10的N次方只影响平方的小数点位置,对数字计算没有影响)。这下终于明白了,设a为A的平方根的前n位,b为A的平方根的n位后面的数字,哪么(10a+b)就是A的平方根。有:(10a+b)(10a+b)=100a*a+20ab+b*b=A变形后:(20a+b)b=A-100a*a上面的计算中第一次商2,然后从结果中减4实质就是A-100a*a第二次再预计商3再减去(20*2+3)*3实质就是:A-100a*a-20ab-b*b即:A-(10a+b)(10a+b)此时10a+b看作为新的已有商a,再求下一个b值。这样就可以一位一位地进行平方根的求解了。
② 平方根公式是什么
平方根公式
结论:被开方数越大,对应的算术平方根也越大(对所有正数都成立)。
一个正数如果有平方根,那么必定有两个,它们互为相反数。显然,如果知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。
(2)李永乐平方根的计算方法扩展阅读
求平方根的迭代公式为:X(n+1)=(Xn+a/Xn) /2。要求前后两次求出的x的差的绝对值小于10的负5次幂。
#include<stdio.h>
#include<math.h>
intmain()
{
doublex1, x2;
doublea;
scanf("%lf",&a);
x2=1.0;
do{
x1=x2;
x2=(x1+a/x1)/2.0;
}while(fabs(x1 - x2)>=0.00001);
printf("%.3lf",x2);
return0 ;
③ 平方根怎么计算
一般学习中数学考试的开方数一般都是整数的平法...非整数根的开方数不会出现在高考以及高考之前的考试中,
整数根的开方数就不说了
计算非整数根的开方数也有很多种类方法...建议直接看第二种,第一种就是爆破...(暴力破解)我更倾向于爆破...因为不用记那么多内容,而且我也不经常去计算这些数
一:
最简单的就是式商,,也就是说大概估算一下这个数的结果,需要非常了解100以内的数的平法值(可以很快计算10000以内的数的开方)比如开方40,根据平时的经验平方数是在6~7之间(6*6=36
7*7=49)并且更接近于6,那么就设定值为6.5
,6.5*6.5
=
42.25大于40---则设定为6.3
,6.3*6.3
=
39.69
---则设定6.35,6.35*6.35
=
40.3225
---则设定6.32
,6.32*6.32
=
39.9424这个数已经很接近40了,可以使用.....
二:
述求平方根的方法,称为笔算开平方法,用这个方法可以求出任何正数的算术平方根,它的计算步骤如下:
1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11'56),分成几段,表示所求平方根是几位数;
2.根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3);
3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256);
4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(3×20除
256,所得的最大整数是
4,即试商是4);
5.用商的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(20×3+4)×4=256,说明试商4就是平方根的第二位数);
6.用同样的方法,继续求平方根的其他各位上的数.
④ 算数平方根有哪些步骤方法
分为整数开平方和小数开平方。 1、整数开平方步骤: (1)将被开方数从右向左每隔2位用撇号分开; (2)从左边第一段求得算数平方根的第一位数字; (3)从第一段减去这个第一位数字的平方,再把被开方数的第二段写下来,作为第一个余数; (4)把所得的第一位数字乘以20,去除第一个余数,所得的商的整数部分作为试商(如果这个整数部分大于或等于10,就改用9左试商,如果第一个余数小于第一位数字乘以20的积,则得试商0); (5)把第一位数字的20倍加上试商的和,乘以这个试商,如果所得的积大于余数时,就要把试商减1再试,直到积小于或等于余数为止,这个试商就是算数平方根的第二位数字; (6)用同样方法继续求算数平方根的其他各位数字。 2、小数部分开平方法: 求小数平方根,也可以用整数开平方的一般方法来计算,但是在用撇号分段的时候有所不同,分段时要从小数点向右每隔2段用撇号分开,如果小数点后的最后一段只有一位,就填上一个0补成2位,然后用整数部分开平方的步骤计算。
⑤ 平方根的计算公式是什么
平方根公式:x=√a。
结论:被开方数越大,对应的算术平方根也越大(对所有正数都成立)。
一个正数如果有平方根,那么必定有两个,它们互为相反数,显然,如果知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。
算数平方根和平方根的联系:
1、前提条件相同:算术平方根和平方根存在的前提条件都是“只有非负数才有算术平方根和平方根”。
2、存在包容关系:平方根包含了算术平方根,因为一个正数的算术平方根只是其两个平方根中的一个。
3、0的算术平方根和平方根相同,都是0。
⑥ 平方根怎么算
步骤:
1、将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开,分成几段,表示所求平方根是几位数;
2、根据左边第一段里的数,求得平方根的最高位上的数;
3、从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数;
4、把求得的最高位数乘以2去试除第一个余数,所得的最大整数作为试商;
5、用商的最高位数的2倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试。
注:一个正数如果有平方根,那么必定有两个,它们互为相反数。显然,如果知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。
负数在实数系内不能开平方。只有在复数系内,负数才可以开平方。负数的平方根为一对共轭纯虚数。
例如:-1的平方根为±i,-9的平方根为±3i,其中i为虚数单位。
例如,A=5,,即求
5介于1的3次方;至2的3次方;之间(1的3次方=1,2的3次方=8)
初始值X0可以取1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,都可以。例如我们取X0 = 1.9按照公式:
第一步:X1=1.9+(5/1.9^2;-1.9)1/3=1.7。
即5/1.9×1.9=1.3850416,1.3850416-1.9=-0.5149584,-0.5149584×1/3=-0.1716528,1.9+(-0.1716528)=1.7。即取2位数值,,即1.7。
第二步:X2=1.7+(5/1.7^2;-1.7)1/3=1.71。
即5/1.7×1.7=1.73010,1.73-1.7=0.03,0.03×1/3=0.01,1.7+0.01=1.71。取3位数,比前面多取一位数。
第三步:X3=1.71+(5/1.71^2;-1.71)1/3=1.709.
第四步:X4=1.709+(5/1.709^2;-1.709)1/3=1.7099
这种方法可以自动调节,第一步与第三步取值偏大,但是计算出来以后输出值会自动转小;第二步,第四步输入值
偏小,输出值自动转大。即5=1.7099^3;
当然初始值X0也可以取1.1,1.2,1.3,。。。1.8,1.9中的任何一个,都是X1 = 1.7 > 。当然,我们在实际中初始值最好采用中间值,即1.5。 1.5+(5/1.5²-1.5)1/3=1.7。
⑦ 快速算平方根的技巧
比较小的数用二分法,大数用以下方法:
述求平方根的方法,称为笔算开平方法,用这个方法可以求出任何正数的算术平方根,它的计算步骤如下:
1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11'56),分成几段,表示所求平方根是几位数;
2.根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3);
3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256);
4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(3×20除 256,所得的最大整数是 4,即试商是4);
5.用商的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(20×3+4)×4=256,说明试商4就是平方根的第二位数);
6.用同样的方法,继续求平方根的其他各位上的数.
一般学生用不着学这个,大部分习题求的平方根都是整数,常用数,需要识记的,学生应当可以适当识记一些常用数的平方根