导航:首页 > 计算方法 > or值的计算方法

or值的计算方法

发布时间:2022-01-19 07:49:18

① SPSS详细教程 OR值的计算

SPSS详细教程:OR值的计算
一、问题与数据
研究者想要探索人群中不同性别者喜欢竞技类或娱乐性体育活动是否有差异。研究者从学习运动医学的学生中随机招募50名学生,记录性别并询问他们喜欢竞技类还是娱乐性活动,通过计算比值比来探索这一差异。
性别变量为gender,男性赋值为1,女性赋值为2;喜欢竞技类运动的变量为comp,是赋值为1,否(即喜欢休闲类运动)赋值为2。部分数据如下图显示,左图为原始数据,右图为按性别和喜欢竞技类运动与否统计的汇总数据。
二、对问题的分析
为计算比值比,需要满足以下两个假设:
1. 假设1:自变量和因变量均为二分类变量。
2. 假设2:观测间相互独立。
接下来,将介绍计算比值比的SPSS操作。
三、SPSS操作
1. 数据准备
如果研究者使用原始数据,跳过数据准备步骤,直接计算比值比;如果使用按性别和喜欢竞技类运动与否统计的汇总数据,则需要添加权重,步骤如下。
(1)点击主菜单Data > Weight Cases,如下图:
点击后出现Weight Cases对话框,如下图:
(2)勾选Weight cases by选项,激活 键和Frequency Variable: 框,如下图:
(3)将变量freq选入Frequency Variable框,如下图:
(4)点击OK键,为数据加权。
2. 比值比的SPSS操作
(1)点击主菜单Analyze > Descriptive Statistics > Crosstabs,如下图:
点击后出现Crosstabs对话框,如下图:
注意:如果使用频数统计的数据文件,Crosstabs对话框如下图:
(2)将自变量gender选入Row(s):框,因变量comp选入Column(s):框,如下图:
注意:如果使用频数统计的数据文件,Crosstabs对话框如下图:
(3)点击Statistics键,出现Crosstabs Statistics对话框,如下图:
(4)勾选Risk,如下图:
(5)点击Continue键。
(6)点击OK键,生成结果。
四、结果解释
1. 描述性分析
在报告比值比前,研究者应该先查看基本的一些统计量,了解数据特征。本例查看gender*comp Crosstabulation表,如下图:
表中可看到50名研究对象中男性和女性各25人。首先,查看男性喜欢竞技类运动的比值,如下图高亮显示:
25名男性中,18名男性喜欢竞技类运动,7名不喜欢(即喜欢娱乐性运动)。因此,男性喜欢竞技类运动的比值为喜欢与不喜欢的概率之比,即为喜欢竞技类运动的男性数量除以不喜欢的男性数量,得到比值为2.57(18÷7=2.57)。因此对男性来讲,喜欢竞技类运动的概率是喜欢娱乐性运动概率的两倍多。
同理,也可以得到女性的比值。下表中为25名女性喜欢竞技类运动的情况:
25名女性中10名喜欢竞技类运动,15名不喜欢。因此女性喜欢竞技类运动的比值为为喜欢竞技类运动的女性数量除以不喜欢的女性数量,得到比值为0.67(10÷15=0.67)。因此对女性来讲,喜欢竞技类运动的概率是喜欢娱乐性运动概率的0.67倍。
因此,研究者可以汇报:“本研究招募了50名研究对象,男女性各25人。与娱乐性运动(n=7)相比,男性更喜欢竞技类运动(n=18);在女性中则相反,10名女性喜欢竞技类运动、15名女性喜欢娱乐性运动”。
2. 比值比
观察Risk Estimate表可以得到比值比,如下图:
性别与喜欢竞技类运动与否的比值比为3.857,95%置信区间为1.180到12.606。95%置信区间代表研究者有95%的把握确定人群中这一关联的真实比值比在1.180到12.606之间。此外,比值比还可以通过gender*comp Cross tabulation表的两个比值手动算出。
计算性别与喜欢竞技类运动与否的比值比,仅需要用男性的比值除以女性的比值,如下面算式。因此,男性喜欢竞技类运动的可能性是女性3.857倍。
如果比值比大于1且95%置信区间不包括1,代表男性喜欢竞技类运动的可能性大于女性;反之,比值比小于1且95%置信区间不包括1,则代表男性喜欢竞技类运动的可能性小于女性;若比值比的95%置信区间包括1,则说明男女性喜欢竞技类运动的可能性无统计学差异。
五、撰写结论
本研究招募了50名研究对象,男女性各25人。与娱乐性运动(n=7)相比,男性更喜欢竞技类运动(n=18);在女性中则相反,10名女性喜欢竞技类运动、15名女性喜欢娱乐性运动。与女性相比,男性喜欢竞技类运动的比值比是3.857(95%置信区间:1.180-12.606),且有统计学意义。

② 统计中求OR值的公式

OR值,又称比值比,对于发病率很低的疾病来说,它是RR值即相对危险度的精确估计值。简单的说,如果OR为2,则说明发病的可能性是普通人的2倍。

使用四格表计算OR值,碰到其中一个单元格是0的时候就不能用四格表设计卡方检验了首先应该核实资料收集是否准确,其次应考虑样本含量是否足够 。

或许你可以试着找一下统计学的教科书

③ 一道关于预防医学的OR值计算的问题,希望大神给出具体解释和答案!

我的计算方法,可知还有20对是病例组无A,对照组有A,四格表如下

A 无A
病例组 50+50 55+20
对照组 50+20 55+50

OR应该为 (100X105)/(75X70)=2
但是不知道为没这个答案,难道我算错了?请大家指出错处

如何用spss做卡方检验时计算OR值

步骤如下:

  1. 点击Descriptive Statistics → Crosstabs。

⑤ 如何用SPSS计算OR值

SPSS的卡方检验并不自动计算出四格表的OR值和95%置信区间,需要你勾选后才会计算出来,步骤如下:
Analyze,Descriptive Statistics,Crosstabs,Statistics,勾选Risk。结果如下

Risk Estimate
Value 95% Confidence Interval
Lower Upper
Odds Ratio for GROUP 2.031 1.303 3.168
For cohort LEVEL 1.886 1.275 2.789
For cohort LEVEL .928 .879 .981
N of Valid Cases 1130
以上表格的第一行数字中的2.031就是OR值,1,303是其95%置信区间的下限,3.168为上限

⑥ 请教统计学比数比(OR)如何计算

实验组的有效/无效跟对照组的有效/无效相比,所得的比值。

⑦ 如何用SPSS计算OR值

logistic回归里会自动输出,如果要单独计算OR值,可以使用SPSSAU【医学研究】里的【OR值】进行计算。

⑧ 如何计算单倍型的OR值

我的计算方法,可知还有20对是病例组无A,对照组有A,四格表如下 A 无A 病例组 50+50 55+20 对照组 50+20 55+50 OR应该为 (100X105)/(75X70)=2 但是不知道为没这个答案,难道我算错了?请大家指出错处

⑨ p值or值怎么

P 值即概率,反映某一事件发生的可能性大小。统计学根据显着性检验方法所得到的P 值,一般以P < 0.05 为显着, P <0.01 为非常显着,其含义是样本间的差异由抽样误差所致的概率小于0.05 或0.01。实际上,P 值不能赋予数据任何重要性,只能说明某事件发生的机率。 P < 0.01 时样本间的差异比P < 0.05 时更大,这种说法是错误的。统计结果中显示Pr > F,也可写成Pr( >F),P = P{ F0.05 > F}或P = P{ F0.01 > F}。 下面的内容列出了P值计算方法。 (1) P值是: 1) 一种概率,一种在原假设为真的前提下出现观察样本以及更极端情况的概率。 2) 拒绝原假设的最小显着性水平。 3) 观察到的(实例的) 显着性水平。 4) 表示对原假设的支持程度,是用于确定是否应该拒绝原假设的另一种方法。 (2) P 值的计算: 一般地,用X 表示检验的统计量,当H0 为真时,可由样本数据计算出该统计量的值C ,根据检验统计量X 的具体分布,可求出P 值。具体地说: 左侧检验的P 值为检验统计量X 小于样本统计值C 的概率,即 = P{ X < C} 右侧检验的P 值为检验统计量X 大于样本统计值C 的概率 = P{ X > C} 双侧检验的P 值为检验统计量X 落在样本统计值C 为端点的尾部区域内的概率的2 倍: P = 2P{ X > C} (当C位于分布曲线的右端时) 或P = 2P{ X< C} (当C 位于分布曲线的左端时) 。若X 服从正态分布和t分布,其分布曲线是关于纵轴对称的,故其P 值可表示为P = P{| X| > C} 。 计算出P 值后,将给定的显着性水平α与P 值比较,就可作出检验的结论: 如果α > P 值,则在显着性水平α下拒绝原假设。 如果α ≤ P 值,则在显着性水平α下接受原假设。 在实践中,当α = P 值时,也即统计量的值C 刚好等于临界值,为慎重起见,可增加样本容量,重新进行抽样检验。 整理自: 樊冬梅,假设检验中的P值. 郑州经济管理干部学院学报,2002,韩志霞, 张玲,P 值检验和假设检验。边疆经济与文化,2006中国航天工业医药,1999 P值是怎么来的 从某总体中抽 ⑴、这一样本是由该总体抽出,其差别是由抽样误差所致; ⑵、这一样本不是从该总体抽出,所以有所不同。 如何判断是那种原因呢?统计学中用显着性检验赖判断。其步骤是: ⑴、建立检验假设(又称无效假设,符号为H0):如要比较A药和B药的疗效是否相等,则假设两组样本来自同一总体,即A药的总体疗效和B药相等,差别仅由抽样误差引起的碰巧出现的。⑵、选择适当的统计方法计算H0成立的可能性即概率有多大,概率用P值表示。⑶、根据选定的显着性水平(0.05或0.01),决定接受还是拒绝H0。如果P>0.05,不能否定“差别由抽样误差引起”,则接受H0;如果P<0.05或P <0.01,可以认为差别不由抽样误差引起,可以拒绝H0,则可以接受令一种可能性的假设(又称备选假设,符号为H1),即两样本来自不同的总体,所以两药疗效有差别。 统计学上规定的P值意义见下表 P值 碰巧的概率 对无效假设 统计意义 P>0.05 碰巧出现的可能性大于5% 不能否定无效假设 两组差别无显着意义 P<0.05 碰巧出现的可能性小于5% 可以否定无效假设 两组差别有显着意义 P <0.01 碰巧出现的可能性小于1% 可以否定无效假设 两者差别有非常显着意义 理解P值,下述几点必须注意: ⑴P的意义不表示两组差别的大小,P反映两组差别有无统计学意义,并不表示差别大小。因此,与对照组相比,C药取得P<0.05,D药取得P<0.01并不表示D的药效比C强。 ⑵ P>0.05时,差异无显着意义,根据统计学原理可知,不能否认无效假设,但并不认为无效假设肯定成立。在药效统计分析中,更不表示两药等效。

⑩ OR值怎么算

spssau进阶方法里的logistic回归里有输出OR值和置信区间

阅读全文

与or值的计算方法相关的资料

热点内容
OVID方法什么意思 浏览:424
锯片铣刀使用方法视频 浏览:783
快速去皱纹方法图片 浏览:955
回奶的问题和解决方法 浏览:49
费用与效益分析的方法 浏览:36
名师教学方法交流简报 浏览:699
儿童锻炼抵抗力的方法 浏览:592
免费图片点亮的方法 浏览:380
带肋钢筋检测方法 浏览:438
吹水机使用方法 浏览:375
面部肌肉疼痛的治疗方法 浏览:850
颈静脉血栓的最佳治疗方法 浏览:732
运动治疗可以采用哪些方法 浏览:11
什么方法能让宝宝不吃奶 浏览:584
奇异果的种植方法 浏览:622
哮喘早期怎样治疗方法 浏览:32
糖尿病的中医治疗方法 浏览:884
小米笔记本mac地址怎么设置在哪里设置方法 浏览:427
建筑楼梯支模测量方法 浏览:57
猪棚制作方法视频 浏览:907