导航:首页 > 计算方法 > 解三重积分的计算方法

解三重积分的计算方法

发布时间:2023-01-02 06:35:12

A. 如何计算三重积分∫∫∫dV

三重积分计算方法

1、三重积分的计算,首先要转化为“一重积分+二重积分”或“二重积分+一重积分”。与二重积分类似,三重积分仍是密度函数在整个坐标轴内每一个点都累积一遍,且与累积的顺序无关。


3、



(1)解三重积分的计算方法扩展阅读:

解三重积分的直角坐标系法。适用于被积区域Ω不含圆形的区域,且要注意积分表达式的转换和积分上下限的表示方法

1、先一后二法投影法,先计算竖直方向上的一竖条积分,再计算底面的积分。区域条件:对积分区域Ω无限制;函数条件:对f(x,y,z)无限制。

2、先二后一法(截面法):先计算底面积分,再计算竖直方向上的积分。区域条件:积分区域Ω为平面或其它曲面(不包括圆柱面、圆锥面、球面)所围成。函数条件:f(x,y)仅为一个变量的函数。

B. 三重积分的计算

三重积分的计算,首先要转化为“一重积分+二重积分”或“二重积分+一重积分”。

适用于被积区域Ω不含圆形的区域,且要注意积分表达式的转换和积分上下限的表示方法:

先一后二法投影法,先计算竖直方向上的一竖条积分,再计算底面的积分。

区域条件:对积分区域Ω无限制;

函数条件:对f(x,y,z)无限制。

先二后一法(截面法):先计算底面积分,再计算竖直方向上的积分。

区域条件:积分区域Ω为平面或其它曲面(不包括圆柱面、圆锥面、球面)所围成

函数条件:f(x,y)仅为一个变量的函数。

三重积分特点:

当然如果把其中的“二重积分”再转化为“累次积分”代入,则三重积分就转化为了“三次积分”,这个属于二重积分化累次积分。

与二重积分类似,三重积分仍是密度函数在整个Ω内每一个点都累积一遍,且与累积的顺序无关(按任意路径累积)。当积分函数为1时,就是其密度分布均匀且为1,三维空间质量值就等于其体积值;当积分函数不为1时,说明密度分布不均匀。

C. 三重积分题如何解答

解题过程如下:

P{丨X丨>2}=P(X>2)+P(X<-2)

而,P(X>2)=P[(x-3)/2>(2-3)/2=-1/2]=1-Φ(-1/2)=Φ(1/2)

P(X<-2)=P[(x-3)/2<(-2-3)/2=-5/2]=Φ(-5/2)=1-Φ(5/2)

查标准正态分布表Φ(1/2)=0.6915、Φ(5/2)=0.9938

∴P{丨X丨>2}=Φ(1/2)+1-Φ(5/2)=0.6915+1-0.9938=0.6977

P{X>3}=P[(x-3)/2>(3-3)/2=0]=1-Φ(0)

而Φ(0)=1/2

∴P{X>3}=1-1/2=1/2

(3)解三重积分的计算方法扩展阅读

设三元函数f(x,y,z)在区域Ω上具有一阶连续偏导数,将Ω任意分割为n个小区域,每个小区域的直径记为r?(i=1,2,...,n),体积记为Δδ?,||T||=max{r?},在每个小区域内取点f(ξ?,η?,ζ?),作和式Σf(ξ?,η?,ζ?)Δδ?。

若该和式当||T||→0时的极限存在且唯一(即与Ω的分割和点的选取无关),则称该极限为函数f(x,y,z)在区域Ω上的三重积分,记为∫∫∫f(x,y,z)dV,其中dV=dxdydz。

设三元函数z=f(x,y,z)定义在有界闭区域Ω上将区域Ω任意分成n个子域Δvi(i=123…,n)并以Δvi表示第i个子域的体积.在Δvi上任取一点。

果空间闭区域G被有限个曲面分为有限个子闭区域,则在G上的三重积分等于各部分闭区域上三重积分的和。

先一后二法投影法,先计算竖直方向上的一竖条积分,再计算底面的积分。区域条件:对积分区域Ω无限制;函数条件:对f(x,y,z)无限制。

先二后一法(截面法):先计算底面积分,再计算竖直方向上的积分。区域条件:积分区域Ω为平面或其它曲面(不包括圆柱面、圆锥面、球面)所围成函数条件:f(x,y)仅为一个变量的函数。

D. 怎样计算三重积分尽量通俗易懂。

其实,三重积分,就是把一重积分和二重积分的扩展 
三重积分及其计算 
一,三重积分的概念 
将二重积分定义中的积分区域推广到空间区域,被积函数推广到三元函数,就得到三重积分的定义 
其中 dv 称为体积元,其它术语与二重积分相同
若极限存在,则称函数可积 
若函数在闭区域上连续, 则一定可积 
由定义可知 
三重积分与二重积分有着完全相同的性质 
三重积分的物理背景 
以 f ( x, y, z ) 为体密度的空间物体的质量 
下面我们就借助于三重积分的物理背景来讨论其计算方法. 
二,在直角坐标系中的计算法 
如果我们用三族平面 x =常数,y =常数, z =常数对空间区域进行分割那末每个规则小区域都是长方体 
其体积为 
故在直角坐标系下的面积元为 
三重积分可写成 
和二重积分类似,三重积分可化成三次积分进行计算 
具体可分为先单后重和先重后单 

E. 三重积分的计算方法

适用于被积区域Ω不含圆形的区域,且要注意积分表达式的转换和积分上下限的表示方法
⑴先一后二法投影法,先计算竖直方向上的一竖条积分,再计算底面的积分。
①区域条件:对积分区域Ω无限制;
②函数条件:对f(x,y,z)无限制。
⑵先二后一法(截面法):先计算底面积分,再计算竖直方向上的积分。
①区域条件:积分区域Ω为平面或其它曲面(不包括圆柱面、圆锥面、球面)所围成;
②函数条件:f(x,y,)仅为一个变量的函数。 适用被积区域Ω的投影为圆时,依具体函数设定,如设x2+y2=a2,x=asinθ,y=acosθ
①区域条件:积分区域Ω为圆柱形、圆锥形、球形或它们的组合;
②函数条件:f(x,y,z)为含有与x2+y2(或另两种形式)相关的项。 适用于被积区域Ω包含球的一部分。
①区域条件:积分区域为球形或球形的一部分,锥面也可以;
②函数条件:f(x,y,z)含有与x2+y2+z2相关的项。

F. 三重积分计算

被积函数推广到三元函数,切条法(
先z次y后x
)
注意
用完全类似的方法可把三重积分化成其它次序下的三次积分,
则一定可积
由定义可知
三重积分与二重积分有着完全相同的性质
三重积分的物理背景

f
(
x
这里有一个幻灯片
其实,得平面区域
⑵穿越法定限.
二,三角形,用截面法较为方便,
就是截面的面积,如截面为圆,椭圆,就得到三重积分的定义
其中
dv
称为体积元,三重积分可化成三次积分进行计算
具体可分为先单后重和先重后单
①先单后重
——也称为先一后二,其它术语与二重积分相同
若极限存在,则称函数可积
若函数在闭区域上连续,就是先求关于某两个变量的二重积分再求关于另一个变量的定积分

f(x,y,z)

上连续
介于两平行平面
z
=
c1
,
z
=
c2
(c1
<
c2
)
之间
用任一平行且介于此两平面的平面去截
得区域

②先重后单
易见,若被积函数与
x
,
y
无关,或二重积分容易计算时,y)作平行于
z
轴的直线
交边界曲面于两点,各边界面平行于坐标面


投影到xoy面得D,它是一个矩形
在D内任意固定一点(x
,穿入点—下限,穿出点—上限
对于二重积分,y)
例2
计算
其中
是三个坐标面与平面
x
+
y
+
z
=1
所围成的区域
D
x
y
z
o

画出区域D

除了上面介绍的先单后重法外,利用先重后单法或切片法也可将三重积分化成三次积分
先重后单,我们已经介绍过化为累次积分的方法
例1

化成三次积分
其中
为长方体,其竖坐标为
l

m
(l
<
m)
o
x
y
z
m
l
a
b
c
d
D
.(x,
y,
z
)
为体密度的空间物体的质量
下面我们就借助于三重积分的物理背景来讨论其计算方法.
化三次积分的步骤
⑴投影,在直角坐标系中的计算法
如果我们用三族平面
x
=常数,y
=常数,
z
=常数对空间区域进行分割那末每个规则小区域都是长方体
其体积为
故在直角坐标系下的面积元为
三重积分可写成
和二重积分类似,三重积分的概念
将二重积分定义中的积分区域推广到空间区域,三重积分,就是把一重积分和二重积分的扩展
三重积分及其计算

G. 三重积分的计算

性质

三重积分
性质1
∫∫∫kf(x,y,z)dv=k∫∫∫f(x,y,z)dv (k为常数)。
Ω Ω
性质2
线性性质:
设α、β为常数,则∫∫∫[αf(x,y,z)±βg(x,y,z)]dv=α∫∫∫f(x,y,z)dv±β∫∫∫g(x,y,z)]dv。
Ω Ω Ω
性质3
如果空间闭区域G被有限个曲面分为有限个子闭区域,则在G上的三重积分等于各部分闭区域上三重积分的和。
性质4
如果在G上,且f(x,y,z)═1,v为G的体积,则v═∫∫∫1dv═∫∫∫dv.
Ω Ω
性质5
如果在G上,f(x,y,z)≤φ(xyz),则有,∫∫∫f(xyz)dv≤∫∫∫φ(x,y,z)dv,特殊地,∫∫∫f(x,y,z)dv∣≤∫∫∫f(x,y,z)dv.
ΩΩ Ω Ω
性质6
设M、m分别为f(x,y,z)在闭区域G上的最大值和最小值,v为G的体积,则有mv≤∫∫∫f(x,y,z)dv≤Mv.
Ω
性质7(积分中值定理)
设函数f(x,y,z)在闭区域G上连续,v是G的面积,则在G上至少存在一个点(ζ,η,μ)使得
∫∫∫f(x,y,z)dv═f(ζ,η,μ)v。
Ω

H. 用什么方法简化三重积分的计算

二重积分一般有直接计算和极坐标计算两种方法~
三重积分一般有直接计算,柱坐标和极坐标三种方法,积分技巧有先一后二或者先二后一两种技巧~

I. 三重积分的四种解法。每种给两个例题

三重积分的计算方法介绍: 三重积分的计算是化为三次积分进行的。其实质是计算一个定积分(一重积分)和一个二重积分。从顺序看: 如果先做定积分2 1),,(zzdzzyxf,再做二重积分D dyxF),(,就是“投 影法”,也即“先一后二”。步骤为:找及在xoy面投影域D。多D上一点(x,y)“穿线”确定z的积分限,完成了“先一”这一步(定积分);进而按二重积分的计算步骤计算投影域D上的二重积分,完成“后二”这一步。ddzzyxfdvzyxfD zz 2 1]),,([),,(

参考这里吧http://wenku..com/link?url=_PcG9rSaanglQ8Ue8f6aVjgsNBMqz_7JEJhZUEgI8NQR0lDRZx-kcyFRAaX2cekVF8A1L1f00a

J. 三重积分的求法

一共有三种类型

(1)直角坐标计算三重积分。

已知体积的x,y,z各各范围

作法:

1 投影到xy(或xz,yz),这时先计算z, x y 已知,用x,y 表示z.

2 计算x,y,用X型,或Y型.(前面已经写过博客)

(2)用柱坐标计算。

有三项

1 角度a

2 r x=pcosa y=psina r的取值范围,联立@1 z=x+y @2 z=ax^2+by ,求出x^2+y^2=r(r已知)。

3 z z的范围用r表示联立两个z= z= 求出x^2+y^2=r,z用r表示。

阅读全文

与解三重积分的计算方法相关的资料

热点内容
土方法如何驱虫 浏览:721
修理换手机有什么好方法 浏览:778
如何教小孩擦鼻涕的正确方法 浏览:841
春季跑步减肥的正确方法 浏览:58
环境监测依据及分析方法 浏览:458
短期减肥最快的方法有哪些 浏览:446
无线网卡怎么安装设置方法 浏览:42
最简单的省油方法 浏览:60
老年房颤的治疗方法 浏览:871
java类的构造方法有什么用 浏览:628
提高手机照片质量的方法 浏览:781
核心投资方法和技巧 浏览:840
孔隙水压力计算方法 浏览:725
棋盘法可以用什么方法代替 浏览:952
精油护发使用方法 浏览:332
干疮的最土治疗方法 浏览:221
高粱标准水分检测方法 浏览:653
卡纸制作房子简单方法 浏览:833
如何克服猛兽的方法 浏览:661
花岗岩异形抛光最佳方法 浏览:27