Ⅰ 小数的简便运算方法
小数乘法:运用运算定律可以使一些计算简便,小数乘法也可以运用整数乘法的运算定律使一些计算简便运用定律计算,如果能设法使一个因数转化为整百数或者两个因数相乘的积为整百数就能使计算简便。
小数除法:被除数和除数同时扩大相同的倍数,商不变。并指出需要特别注意被除数和除数要同时扩大,而且扩大的倍数相同。)
小数乘法的运算法则:
1、先按照整数乘法的法则求出积;
2、再看被乘数和乘数一共有几位小数,就从积的右边起数出几位,点上小数点;
3、如果小数的末尾出现0时,根据小数的基本性质,把小数末尾的0划去。
(2)小数计算方法扩展阅读:
竖式计算法则
1、乘法
一个数的第i位乘上另一个数的第j位
就应加在积的第i+j-1位上。
2、除法
如42除以7。
从4开始除〔从高位到低位〕。除法用竖式计算时,从最高位开始除起,如:42就从最高位十位4开始除起;若除不了,如:4不能除以7。
那么就用最高位和下一位合成一个数来除,直到能除以除数为止;如:42除7中4不能除7,就把4和2合成一个数42来除7,商为6。
Ⅲ 小数竖式计算有哪些
小数乘法竖式:末位对齐,按整数乘法的计算法则进行计算,算出积后,看两个因数里一共有几位小数,就从积的右边起数出几位点上小数点,末尾有零的可以把零去掉。
小数除法竖式:主要看除数,除数是几位小数,就和被除数同时扩大相同的倍数把除数变成整数,按整数除法的法则进行计算。
小数乘除法计算法则:
1、小数的乘法计算法则:
先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点。如果位数不够,就用"0"补足。
2、小数的除法计算法则:
先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补"0"),然后按照除数是整数的除法法则进行计算。
竖式计算
列竖式笔算有两个要点:相同数位对齐,从个位加起。( 不进位可以先加十位,但是为以后的进位加法着想,不提倡)。在练习本上的格式严格按以下要求来进行:
1、算式的横式从数学本横格线的左端开始写。
2、竖式第一个加数写在横式第二个加数下面,加号与横式中的加号对齐,加数、加数、和,三者的相同数位一定要对齐。
3、列竖式算完后,不要漏掉横式上的得数。
Ⅳ 小数简便计算方法总结
简算是一种简便、迅速的运算,根据算式的不同特点,利用数的组成和分解、各种运算定律、性质或它们之间的特殊关系,使计算过程简单化,或直接得出结果。根据归纳,常见以下几类题型:
(一)“凑整巧算”——运用加法的交换律、结合律进行计算。要求学生善于观察题目,同时要有凑整意识。
【评注】凑整,特别是“凑十”、“凑百”、“凑千”等,是加减法速算的重要方法。
1、加法交换律
定义:两个数交换位置和不变,
公式:A+B =B+A,
例如:6+18+4=6+4+18
2、加法结合律
定义:先把前两个数相加,或者先把后两个数相加,和不变。
公式:(A+B)+C=A+(B+C),
例如:(6+18)+2=6+(18+2)
3、引申——凑整
例如:1.999+19.99+199.9+1999
=2+20+200+2000-0.001-0.01-0.1-1
=2222-1.111
=2220.889
【评注】所谓的凑整,就是两个或三个数结合相加,刚好凑成整十整百,譬如此题,“1.999”刚好 与“2”相差0.001,因此我们就可以先把它读成“2”来进行计算。但是,一定要记住刚 才“多加的”要“减掉”。“多减的”要“加上”!
(二)运用乘法的交换律、结合律进行简算。
1、乘法交换律
定义:两个因数交换位置,积不变.
公式:A×B=B×A
例如:125×12×8=125×8×12
2、乘法结合律
定义:先乘前两个因数,或者先乘后两个因数,积不变。
公式:A×B×C=A×(B×C),
例如:30×25×4=30×(25×4)
(三)运用减法的性质进行简算,同时注意逆进行。
1、减法
定义:一个数连续减去两个数,可以先把后两个数相加,再相减。
公式:A-B-C=A-(B+C),【注意:A-(B+C)= A-B-C的运用】
例如:20-8-2=20-(8+2)
(四)运用除法的性质进行简算 (除以一个数,先化为乘以一个数的倒数,再分配)。
1、除法
定义:一个数连续除去两个数 ,可以先把后两个数相乘,再相除。
公式:A÷B÷C=A÷(B×C),
例如:20÷8÷1.25=20÷(8×1.25)
定义:除数除以被除数,把被除数拆为两个数字连除(这两个数的积一定是这个被除数)
例如:64 ÷16=64÷8÷2=8÷2=4
(五)运用乘法分配律进行简算
1、乘法分配律
定义:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。
公式:(A+B)×C=A×C+B×C
例如;2.5×(100+0.4)= 2.5×100+2.5×0.4= 250+1= 251
【注意】:有些题目是运用分配律的逆运算来简算:A×C+B×C=(A+B)×C:即提取公因数。
例如:75.3×99+75.3=75.3×(99+1)=75.3×100=7530
(六)混合运算(根据混合运算的法则)
注:数字搭档( 0.5和2、0.25和4、0.125和8)
总的说来,简便运算的思路是:(1)运用运算的性质、定律等。
(2)可能打乱常规的计算顺序。
(3)拆数或转化时,数的大小不能改变。
(4)正确处理好每一步的衔接。
(5)速算也是计算,是将硬算化为巧算。
(6)能提高计算的速度及能力,并能培养严谨细致、灵活巧妙的工作习惯。
Ⅳ 小数怎么计算啊
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。从小数从右开始数,去掉第一个不是0后面的0,小数大小不变。
小数的除法计算法则:先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补"0"),然后按照除数是整数的除法法则进行计算。
小数,是分数的另一种表现形式。所有分数都可以表示成小数,小数中的圆点叫做小数点,它是一个小数的整数部分和小数部分的分界号。
(5)小数计算方法扩展阅读:
一个最简分数可以被化作十进制的有限小数当且仅当其分母只含有质因数2或5或两者。 类似的,一个最简分数可以被化作某正整数底数的有限小数当且仅当其分母之质因数为此基底质因数的子集。
所有分数都可以表示成小数,小数中的圆点叫做小数点,它是一个小数的整数部分和小数部分的分界号。其中整数部分是零的小数叫做纯小数,整数部分不是零的小数叫做带小数。
最早使用小数的其实是中国,早在3世纪,我国古代数学家刘徽在解决一个数学问题时,就提出把整数个位以下无法标出名称的部分称为微数。小数的名称是13世纪我国元代数学家朱世杰提出的。在西方,小数出现很晚,直到16世纪,法国数学家克拉维斯首先使用了小数点作为整数部分与小数部分分界的记号。
Ⅵ 小数的简便计算方法
简便运算,就是利用运算定律或者是运算性质,巧用特殊数之间的特性进行巧算。
操作方法:
1、利用运算定律。利用加法的交换律和结合律,乘法的交换律、结合律和分配律,可以使计算简便。
2、分解因数。有的特殊数相乘是可以得到整数的,比如25和4,125和8等等,在我们遇到这些数字时,可以想办法把它们变成能得到整数的数字。
3、数字变形。有的列式中的数字不能用简便方式,但是我们把一些数字变形后就可以采用简便方式,这时我们就要给数字变形了。
4、等差数列。有些算式的相邻数字的差是相同的,这时我们可以采用等差数列公式算式。
5、设数法。有些算式中,有的数字是相同的,但是式子又比较长,这时我们可以把相同的数字组成的算式设为一个字母,然后把式子中相应的换成字母,再计算,就简便多了。
6、凑整法。有些小数与整数相差很少,又有规律,这是我们可以凑成整数计算。
Ⅶ 小数简便运算的技巧
小数的简便运算先看,如果有两个小数能凑整的,就先把两个小数加起来,也就先加那两个小数,比如说1.6和2.4加起来就等于4。这个的话数学课本上应该有的,你可以多去看一看数学课本。上课的时候也应该认真听讲。
Ⅷ 小数计算怎么算的
小数乘法的运算法则:
1、先按照整数乘法的法则求出积。
2、再看被乘数和乘数一共有几位小数,就从积的右边起数出几位,点上小数点。
3、如果小数的末尾出现0时,根据小数的基本性质,把小数末尾的0划去。
乘法竖式计算要注意四个问题:
1、两个数的最后一位要对齐。
2、尽量把数字多的数写在上面,数字少的数写在下面,以减少乘的次数。
3、如果两个数的末尾有“0”,写竖式时可以只将“0”前面的数的最后一位对齐,最后在竖式积的后面添上两个数共有的“0”的个数。
4、小数乘法要根据小数的倍数确定积的小数点的位置。