1. 对数的运算法则及换底公式
对数的运算法则是:
1.lnx+lny=lnxy;
2.lnx-lny=ln(x/y);
3、lnx=nlnx;
4、ln(√x)=lnx/n;
5.lne=1;
6.ln1=0。
换底公式是:log(a)(x)=log(b)(x)/log(b)(a)=lg(x)/lg(a)=ln(x)/ln(a)。
在数学中,对数是对求幂的逆运算,正如除法是乘法的倒数,反之亦然。这意味着一个数字的对数是必须产生另一个固定数字(基数)的指数。在简单的情况下,乘数中的对数计数因子。乘幂允许将任何正实数提高到任何实际功率,总是产生正的结果,因此可以对于b不等于1的任何两个正实数b和x计算对数。
2. 对数的运算公式
①loga(mn)=logam+logan;
②loga(m/n)=logam-logan;
③对logam中m的n次方有=nlogam;
如果a=e^m,则m为数a的自然对数,即lna=m,e=2.718281828…为自然对数
的底。定义:
若a^n=b(a>0且a≠1)
则n=log(a)(b)
基本性质:
1、a^(log(a)(b))=b
2、log(a)(mn)=log(a)(m)+log(a)(n);
3、log(a)(m÷n)=log(a)(m)-log(a)(n);
4、log(a)(m^n)=nlog(a)(m)
5、log(a^n)m=1/nlog(a)(m)
推导:
1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。
2、mn=m×n
由基本性质1(换掉m和n)
a^[log(a)(mn)]
=
a^[log(a)(m)]×a^[log(a)(n)]
由指数的性质
a^[log(a)(mn)]
=
a^{[log(a)(m)]
+
[log(a)(n)]}
又因为指数函数是单调函数,所以
log(a)(mn)
=
log(a)(m)
+
log(a)(n)
3、与(2)类似处理
m/n=m÷n
由基本性质1(换掉m和n)
a^[log(a)(m÷n)]
=
a^[log(a)(m)]÷a^[log(a)(n)]
由指数的性质
a^[log(a)(m÷n)]
=
a^{[log(a)(m)]
-
[log(a)(n)]}
又因为指数函数是单调函数,所以
log(a)(m÷n)
=
log(a)(m)
-
log(a)(n)
4、与(2)类似处理
m^n=m^n
由基本性质1(换掉m)
a^[log(a)(m^n)]
=
{a^[log(a)(m)]}^n
由指数的性质
a^[log(a)(m^n)]
=
a^{[log(a)(m)]*n}
又因为指数函数是单调函数,所以
log(a)(m^n)=nlog(a)(m)
基本性质4推广
log(a^n)(b^m)=m/n*[log(a)(b)]
推导如下:
由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底]
log(a^n)(b^m)=ln(b^m)÷ln(a^n)
换底公式的推导:
设e^x=b^m,e^y=a^n
则log(a^n)(b^m)=log(e^y)(e^x)=x/y
x=ln(b^m),y=ln(a^n)
得:log(a^n)(b^m)=ln(b^m)÷ln(a^n)
由基本性质4可得
log(a^n)(b^m)
=
[m×ln(b)]÷[n×ln(a)]
=
(m÷n)×{[ln(b)]÷[ln(a)]}
再由换底公式
log(a^n)(b^m)=m÷n×[log(a)(b)]
3. 对数运算怎么进行简便计算
简单的对数运算 直接用减法。ln2-ln1=ln(2/1)=ln2
如果是加法就是ln2+ln1=ln(2x1)=ln2
4. 对数函数的运算公式.
对数的运算性质
当a>0且a≠1时,M>0,N>0,那么:
(1)log(a)(MN)=log(a)(M)+log(a)(N);
(2)log(a)(M/N)=log(a)(M)-log(a)(N);
(3)log(a)(M^n)=nlog(a)(M) (n∈R)
(4)log(a^n)(M)=(1/n)log(a)(M)(n∈R)
(5)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)
(6)a^(log(b)n)=n^(log(b)a)
设a=n^x则a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a)
(7)对数恒等式:a^log(a)N=N;
log(a)a^b=b 证明:设a^log(a)N=X,log(a)N=log(a)X,N=X
(8)由幂的对数的运算性质可得(推导公式)
1.log(a)M^(1/n)=(1/n)log(a)M , log(a)M^(-1/n)=(-1/n)log(a)M
2.log(a)M^(m/n)=(m/n)log(a)M , log(a)M^(-m/n)=(-m/n)log(a)M
3.log(a^n)M^n=log(a)M , log(a^n)M^m=(m/n)log(a)M
4.log(以 n次根号下的a 为底)(以 n次根号下的M 为真数)=log(a)M ,
log(以 n次根号下的a 为底)(以 m次根号下的M 为真数)=(n/m)log(a)M
5.log(a)b×log(b)c×log(c)a=1
对数公式是数学中的一种常见公式,如果a^x=N(a>0,且a≠1),则x叫做以a为底N的对数,记做x=log(a)(N),其中a要写于log右下。其中a叫做对数的底,N叫做真数。通常我们将以10为底的对数叫做常用对数,以e为底的对数称为自然对数。
5. 对数的运算法则及公式
对数运算法则是一种特殊的运算方法,指积、商、幂、方根的对数的运算法则。具体为两个正数的积的对数,等于同一底数的这两个数的对数的和,两个正数商的对数,等于同一底数的被除数的对数减去除数对数的差。
对数的运算公式:a^(log(a)(N))=a^t。对数公式是数学中的一种常见公式,如果a^x=N(a>0,且a≠1),则x叫作以a为底N的对数,记做x=log(a)(N),其中a要写于log右下。其中a叫作对数的底,N叫作真数 。
基本性质:
1、a^(log(a)(b))=b
2、log(a)(MN)=log(a)(M) + log(a)(N)
3、log(a)(M÷N)=log(a)(M) - log(a)(N)
4、log(a)(M^n)=n * log(a)(M)
5、log(a^n)M=1/n * log(a)(M)
数学公式是人们在研究自然界物与物之间时发现的一些联系,并通过一定的方式表达出来的一种表达方法。是表征自然界不同事物之数量之间的或等或不等的联系,它确切地反映了事物内部和外部的关系,是我们从一种事物到达另一种事物的依据,使我们更好地理解事物的本质和内涵。
6. 对数如何简化运算
乘除变加减。乘方开方变乘除。例如,要计算3^{\frac17}.就先算3的对数,再除以7,再取反对数(也就是指数)。
7. 对数公式的运算法则
运算法则公式如下:
1.lnx+ lny=lnxy
2.lnx-lny=ln(x/y)
3.lnxⁿ=nlnx
4.ln(ⁿ√x)=lnx/n
5.lne=1
6.ln1=0
拓展内容:
对数运算法则(rule of logarithmic operations)一种特殊的运算方法.指积、商、幂、方根的对数的运算法则。
在数学中,对数是对求幂的逆运算,正如除法是乘法的倒数,反之亦然。 这意味着一个数字的对数是必须产生另一个固定数字(基数)的指数。 在简单的情况下,乘数中的对数计数因子。
更一般来说,乘幂允许将任何正实数提高到任何实际功率,总是产生正的结果,因此可以对于b不等于1的任何两个正实数b和x计算对数。
由指数和对数的互相转化关系可得出:
1.两个正数的积的对数,等于同一底数的这两个数的对数的和,即
8. 如何计算对数
一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log aN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数.一般地,函数y=log(a)X,(其中a是常数,a>0且a不等于1)叫做对数函数 它实际上就是指数函数的反函数,可表示为x=a^y.因此指数函数里对于a的规定,同样适用于对数函数.
举个例子:
log函数就是次方函数的逆运算的。y=2^x,这就是一个次方函数。y=2^x的逆函数就是x=log2y。
,则有e(2k+1)πi+1=0,所以ln(-1)的具有周期性的多个值,ln(-1)=(2k+1)πi。这样,任意一个负数的自然对数都具有周期性的多个值。例如:ln(-5)=(2k+1)πi+ln 5。
9. 对数函数运算法则公式
对数函数运算法则公式是如果a^x=N(a>0,且a≠1),则x叫做以a为底N的对数,记做x=log(a)(N),其中a要写于log右下。其中a叫做对数的底,N叫做真数。通常将以10为底的对数叫做常用对数,以e为底的对数称为自然对数。
一般地,对数函数是以幂(真数)为自变量,指数为因变量,底数为常量的函数。
对数函数是6类基本初等函数之一。其中对数的定义:
如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。
其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。