导航:首页 > 计算方法 > 矩阵的计算方法

矩阵的计算方法

发布时间:2022-01-17 09:35:24

‘壹’ 矩阵a*算法是什么

矩阵A*表示A矩阵的伴随矩阵。

伴随矩阵的定义:某矩阵A各元素的代数余子式,组成一个新的矩阵后再进行一下转置,叫做A的伴随矩阵。

某元素代数余子式就是去掉矩阵中某元素所在行和列元素后的形成矩阵的行列式,再乘上-1的(行数+列数)次方。

伴随矩阵的求发:当矩阵是大于等于二阶时:

主对角元素是将原矩阵该元素所在行列去掉再求行列式。

非主对角元素是原矩阵该元素的共轭位置的元素去掉所在行列求行列式乘以(-1)^(x+y) x,y为该元素的共轭位置的元素的行和列的序号,序号从1开始的。

主对角元素实际上是非主对角元素的特殊情况,因为x=y,所以(-1)^(x+y)=(-1)^(2x)=1,一直是正数,没必要考虑主对角元素的符号问题。

‘贰’ 矩阵的计算方法是什么

1、确认矩阵是否可以相乘。只有第一个矩阵的列的个数等于第二个矩阵的行的个数,这样的两个矩阵才能相乘。

图示的两个矩阵可以相乘,因为第一个矩阵,矩阵A有3列,而第二个矩阵,矩阵B有3行。

(2)矩阵的计算方法扩展阅读

一般计算中,或者判断中还会遇到以下11种情况来判断是否为可逆矩阵:

1、秩等于行数。

2、行列式不为0。

3、行向量(或列向量)是线性无关组。

4、存在一个矩阵,与它的乘积是单位阵。

5、作为线性方程组的系数有唯一解。

6、满秩。

7、可以经过初等行变换化为单位矩阵。

8、伴随矩阵可逆。

9、可以表示成初等矩阵的乘积。

10、它的转置矩阵可逆。

11、它去左(右)乘另一个矩阵,秩不变。

‘叁’ 矩阵的算法~

a1*a2+b1*a3这是第一个数,a1*b2+b1*b3这是第二个数,也就是用A1/B1分别乘第一列,第二列得到的数字作为新矩阵的行,就是解

‘肆’ 矩阵乘法怎么

比如乘法AB

一、

1、用A的第1行各个数与B的第1列各个数对应相乘后加起来,就是乘法结果中第1行第1列的数;

2、用A的第1行各个数与B的第2列各个数对应相乘后加起来,就是乘法结果中第1行第2列的数;

3、用A的第1行各个数与B的第3列各个数对应相乘后加起来,就是乘法结果中第1行第3列的数;

依次进行,(直到)用A的第1行各个数与B的第末列各个数对应相乘后加起来,就是乘法结果中第1行第末列的的数。

二、

1、用A的第2行各个数与B的第1列各个数对应相乘后加起来,就是乘法结果中第2行第1列的数;

2、用A的第2行各个数与B的第2列各个数对应相乘后加起来,就是乘法结果中第2行第2列的数;

3、用A的第2行各个数与B的第3列各个数对应相乘后加起来,就是乘法结果中第2行第3列的数;

依次进行,(直到)用A的第2行各个数与B的第末列各个数对应相乘后加起来,就是乘法结果中第2行第末列的的数。

依次进行,

(直到)用A的第末行各个数与B的第1列各个数对应相乘后加起来,就是乘法结果中第末行第1列的数;

用A的第末行各个数与B的第2列各个数对应相乘后加起来,就是乘法结果中第末行第2列的数;

用A的第末行各个数与B的第3列各个数对应相乘后加起来,就是乘法结果中第末行第3列的数;

依次进行,

(直到)用A的第末行各个数与B的第末列各个数对应相乘后加起来,就是乘法结果中第末行第末列的的数。

(4)矩阵的计算方法扩展阅读:

矩阵相乘最重要的方法是一般矩阵乘积。它只有在第一个矩阵的列数(column)和第二个矩阵的行数(row)相同时才有意义[1]。一般单指矩阵乘积时,指的便是一般矩阵乘积。一个m×n的矩阵就是m×n个数排成m行n列的一个数阵。由于它把许多数据紧凑的集中到了一起,所以有时候可以简便地表示一些复杂的模型。

参考资料:矩阵乘法_网络

‘伍’ 简单的矩阵的计算方法

计算方阵的n次幂. 可以先将矩阵对角化. 这可以通过计算特征值和特征向量实现.

‘陆’ 矩阵算法

已发送到邮箱里!

‘柒’ 计算矩阵的值

1、利用行列式定义直接计算。

2、利用行列式的七大性质计算。

3、化为三角形行列式:若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。因此化三角形是行列式计算中的一个重要方法。

4、降阶法:按某一行(或一列)展开行列式,这样可以降低一阶,更一般地是用拉普拉斯定理,这样可以降低多阶,为了使运算更加简便,往往是先利用列式的性质化简,使行列式中有较多的零出现,然后再展开。 


(7)矩阵的计算方法扩展阅读:

矩阵行列式的相关性质:

1、行列式A中某行(或列)用同一数k乘,其结果等于kA。

2、行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

3、若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。

4、行列式A中两行(或列)互换,其结果等于-A。 ⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。

‘捌’ 矩阵的计算

答案如图,第一题计算A²和A³看规律即可

阅读全文

与矩阵的计算方法相关的资料

热点内容
医用免缝胶带使用方法 浏览:877
甄别性评价方法有哪些 浏览:225
沙糖橘的控制方法视频 浏览:342
肌腱炎快速止痛方法 浏览:169
天平使用过程研究方法 浏览:958
录像机故障检测方法 浏览:483
表达方法都有哪些句子的 浏览:112
鉴别胶体和溶液的四种方法 浏览:284
七百除以六十的简便方法 浏览:536
苹果6s转移功能在哪里设置方法 浏览:502
许三多锻炼方法 浏览:524
高中物理受力分析画圆的方法 浏览:37
手腕疼痛的原因及治疗方法是什么 浏览:737
治疗扁平疣土方法 浏览:470
珍嗖啦跟米昔使用方法 浏览:206
如何学会拉筋方法 浏览:757
回忆技巧与方法 浏览:942
怎么快速补血方法 浏览:166
p型管连接方法 浏览:398
训练胯下击球的方法 浏览:118