⑴ 边缘计算与雾计算
随着物联网的快速发展以及大数据2.0时代的来临,预计不久的将来将有500亿台物联网设备连接到互联网,有50%的物联网网络将面临网络带宽的限制,40%的数据需要在网络边缘分析、处理与储存。
过去,数据在前端采集通过网络传输在云端计算,计算结果等一系列数据返回前端进行相应操作。然而,我们现在面临的是巨大的物联网设备的接入,每天产生的数据量给网络带来了巨大的传输压力,近TB级别的操作转移到云中进行实时数据交互是非常不现实的。
对于一辆自主驾驶的汽车来说,它需要更低的网络延迟,这也要求将计算能力转移到更近的边缘,以提高其工作的安全性。基于此背景,雾计算和边缘计算得到了广泛的重视。
先来看看边缘计算和雾计算的概念。
雾计算
这个概念由思科在2011首创,是相对于云计算而言的。它并非是些性能强大的服务器,而是由性能较弱、更为分散的各种功能计算机组成,渗入电器、工厂、汽车、街灯及人们生活中的各种物品。
简单点说,它拓展了云计算的概念,相对于云计算它离产生数据的地方更近,数据、数据相关的处理和应用程序都集中于网络边缘的设备中,而不是几乎全部保存在云端。这里因“云”而“雾”的命名源自“雾是更贴近地面的云”这句话。
边缘计算
它进一步推进了雾计算中“局域网处理能力”的理念,但实际上边缘计算的概念提出比雾计算还要早。边缘计算的起源可以追溯到上个世纪90年代,当时Akamai公司推出了内容传送网络(CDN),该网络在接近终端用户设立了传输节点,这些节点能够存储缓存的静态内容,如图像和视频等。
边缘计算的处理能力更靠近数据源,其应用程序在边缘侧发起,产生更快的网络服务响应,满足行业在实时业务、应用智能、安全与隐私保护等方面的基本需求。边缘计算处于物理实体和工业连接之间,或处于物理实体的边缘末端。
某些应用程序可能会收集大量数据,这些数据被发送到中央云服务的成本很高。但是它们收集的数据中可能只有少量是有用的。如果在网络边缘进行某些处理并且仅将相关信息发送到云,则可以有效降低成本。
例如安全摄像头,将24小时视频发送到中央服务器将是非常昂贵的,其中23个小时可能只是一个空荡荡的走廊。如果使用边缘计算,您可以选择仅发送实际发生某事的那一小时。
那么两者究竟有什么区别?
简单点来说,雾计算和边缘计算都涉及到处理更接近原点的数据。关键的区别在于处理发生的确切位置。
为了区分边缘计算和雾计算,让我们考虑以智能城市为例。
想象一下配备了智能交通管理基础设施的智能城市,交通信号灯上连接了一个传感器,可以检测到交叉路口每侧有多少车辆在等待,并优先为最大等待数量的车道转动绿灯。这是一个相当简单的计算,可以使用边缘计算在交通灯本身中执行。这减少了需要通过网络发送的数据量,从而降低了运营和存储成本。
现在,想象一下这些交通信号灯是连接对象网络的一部分,包括更多交通信号灯,行人过路处,污染监视器,公交车GPS跟踪器等等。
是否在五秒钟或十秒内将交通信号灯变为绿色,这样一个决定就会变得更加复杂。也许此时有一辆公共汽车在交叉路口的一侧迟到了,也许该市决定在下雨时优先考虑行人和骑自行车的人,也许附近设有人行横道或自行车道,等等,都会影响最终的判断。
在这种更复杂的情况下,计算的判断逻辑也会更复杂一些,此时我们可以在本地部署一个微型数据中心,以便分析来自多个边缘节点的数据。这些微型数据中心就像局域网内的本地迷你云一样,被认为是雾计算。
由此看来,物联网需要真正的边缘计算/雾计算来应对日益增大的数据处理需求。未来边缘计算市场规模将超万亿,成为与云计算平分秋色的新兴市场。
⑵ 边缘计算的应用场景都有哪些
边缘计算主要应用于以下场景:
1.无人驾驶
2.智能安防
3. 语音协助
4.医疗保健
5.农业和智能农场
6.能源和电网控制
从十次方平台看到的,望采纳。
⑶ 华为对边缘计算的思考与理解
作者:黄还青;华为高级产业发展经理,ECC需求与总体组副主席。
首先我们认为边缘计算的兴起应该是在过去三四年,之所以兴起大背景是因为实体经济的数字化转型。这波实体经济数字化以万物感知、万物互联、万物智能为特征,这三方面的特征仅仅依靠云计算是没办法特别好的解决,比如实时性、带宽、安全、隐私等等一些问题,在这样背景下,边缘计算逐渐兴起。
我们分享几个行业对于边缘计算的需求特征和大背景下浮现出来关于边缘计算的机会。先看一下工业,1.工业4.0以及智能制造大背景下,推动了工业界原来传统的架构重构:云+边缘+设备三层扁平互联架构。在这个过程中,边缘计算为什么有价值?边缘计算核心是解决了传统五层架构里面网络孤岛、数据孤岛与业务孤岛的问题,同时更好的支撑柔性制造,并且带来从技术到商业各个方面价值创新的能力。
2.OPC-UA overTSN向下渗透,边缘计算碎片化的问题在工业界尤其明显。比如工业界目前一个比较好的解决方案,能解决边缘计算碎片化的方案。OPC-UA over TSN 原来更多是在PLC之间及以上的层次。去年11月份在 OPC基金会下面成立FLC工作组,工作组目的是 PLC以下的层次如何利用OPC UA over TSN 技术需求,研究明白,协议规范,定义清楚。
其实,工业界大背景下,施耐德这样的巨头已经围绕大的趋势,展开一些 探索 ,我们看到施耐德已经明确了要基于 云+边缘控制+产品 三个层次去重构原有的架构,特意强调边缘控制层的智能化是非常核心的点,提到了边缘计算的主要形态,包括本地设备和边缘云;同时和华为开展持续深入的合作。
智慧城市,从08年IBM提出了智慧地球概念后,智慧城市的建设在全球成为了个热点;17年中国发布了数字中国战略,引爆了新一轮智慧城市的建设,边缘侧拥有最全的诉求,所以新一轮智慧城市的建设需要边缘智能、边缘协同、边缘能力的支撑;同时,5G的发展会极大推动城市的万物互联,这也将极大促进边缘计算产业发展。例如河长巡河场景下,利用边缘计算实时采集河湖动态信息,通过AI辅助进行监测数据处理,污染预警溯源;智慧路灯场景下,借助边缘计算实时监控路灯运行状态,辅助路灯开、关、亮度管理,本地化运营团队进行针对性维护,精准高效;雪亮工程场景下,边缘计算不仅能够进行边缘预处理,剔除“垃圾”信息,减少上传的视频数据,还能够使边缘设备更加“聪明”。
全球主流运营商看重边缘计算产业机会点,都在拓耕边缘计算领域,从管道经营到算力经营,完善2C业务体验,强化2B市场能力。
中国联通致力于构建一个开放的,开源的Edge-Cloud服务PaaS平台,以灵活分配计算,存储,网络和加速器资源,旨在加速边缘服务的孵化和推广。
1、发布CUBE-Edge2.0白皮书;
2、中国联通将大力发展边缘DC,启动全国范围内15个省市的规模试点;
3、主导的《IoT requirements for Edge computing》国际标准项目立项
中国移动将边缘计算上升为公司战略与5G并列。中移动将边缘计算上升为公司战略与5G并列,推动中国移动未来从管道经营(流量变现)扩展到算力经营(服务变现)”
1、成立中国移动边缘计算开放实验室;
2、发布中国移动边缘计算技术白皮书;
3、宣布Pioneer300计划。
美国电信公司AT&T将边缘计算定位其5G战略三大支柱之一,AT&T已经为移动和固定无线应用接入边缘计算,可以使用LTE或5G连接进行部署。主导发起了Akraino开源,通过开源加快边缘计算生态建设和商用部署。
全球移动通信系统协会,简称GSMA,全球移动通信系统协会(GSMA)成立于1987年,是全球移动通信领域的行业组织,目前其成员已包括220个国家的近800家移动运营商以及230多家更为广泛的移动生态系统中的企业,其中包括手机制造商、软件公司、设备供应商、互联网公司以及金融服务、医疗、媒体、交通和公共事业等领域的企业。GSMA认为边缘计算是运营商未来重要发展方向:
1、Edge Cloud如何帮助运营商Cloud VR/AR等新型业务降低部署成本,加快部署速度;
2、边缘计算如何推动当前智慧城市,智能制造中图像处理能力,
GSMA动态:
1、GSMA在MWC2019发布了边缘计算白皮书:Distributed Edge Cloud: Definitions,
Dynamics AndDrivers,
2、GSMA计划通过推动边缘计算典型PoC来加速边缘计算在运营商的应用。
GSMA定义的2大边缘计算形态
运营商边缘计算核心技术:
1、多形态I硬件(边缘云,一体机形态,异构数据处理云化网关等);
2、轻量级云原生PaaS(微服务,Serveless等);
3、安全(物理安全,平台安全,应用安全等)。
边缘计算技术方向往那些方向走?
边缘计算需要与云计算协同,才能最大化增强实现彼此的应用价值,这个得到产业界的广泛认同,但是边云协同的价值和内涵到底是什么,涉及到那些方面的协同?这些问题在产业界一直缺乏共识。去年,ECC产业联盟试图从主要场景出发,初步梳理了边云协同的全视图,我们认为边云协同大体上会涉及三层六类协同,也就是从IaaS 到 PaaS 到SaaS三个层次,边缘侧三个层次和云侧三个层次一定有相互协同工作,落实到具体场景中,不见得所有业务场景都会包括,我们这个六类应该是目前阶段理解边云协同的全视图。
边缘计算正从1.0走向2.0,如果说1.0更偏向概念定义,主要目的是推动产业共识;2.0则更加关心技术和能力构建,从而促进边缘计算的实践落地。边缘计算2.0核心观点包括落地形态,我们认为主要是边缘云和云化网关两种形态,当然细分来说还有很多。
边缘云主要提供近现场的综合计算能力,支撑智慧园区、平安城市、智能制造等场景,将中心云的能力拉近到边缘,是下一步云计算创新突破的增长点。
云化网关是企业/行业数据的汇聚节点,是网关设备基于云计算技术的演进,主要通过多样连接、实时处理、云化管理和人工智能等关键能力,边云协同使能行业数字化。
软件平台,一定是引入云架构、云技术,实现端到端实时、协同式智能、可信赖、可动态重置的能力。
硬件平台:以异构计算为主,需要考虑ARM+X86+GPU+NPU+FPGA异构计算能力的支持。
核心特征:边云协同和边缘智能。
从趋势看,边缘计算发展分为三阶段。
第一阶段,这个阶段时期大致是2015年-2017年,概念孵化,产业共识
产业共识:边缘计算及其价值成为产业共识
概念泛化:雾计算、边缘计算、节点计算、移动边缘计算、开放边缘计算
边界不清:OT认为20年前的工业现场PLC即是、海康威视认为智能摄像头即是、思科认为云之下终端之上。
第二阶段,当前就是在第二阶段,2018年到2020年,主要是进一步聚焦及落地 探索
价值落地场景:从泛化概念,逐步聚焦到云边缘、物联网边缘价值场景。
业务本质:云计算在数据中心之外汇聚节点的延伸和演进。“边云协同、边缘智能”为核心能力。
第三阶段是2020年以后,开始规模发展
带来更丰富的应用场景:增值业务(如预测性维护)到控制系统(如vPLC)
以及更广泛的行业覆盖:从制造/运营商/能源到泛工业(如交通、企业、智慧家居等)
边缘计算已经形成产业共识,正从泛化概念走向进一步聚焦及落地 探索 ,未来3~5年是产业发展关键期。
⑷ 边缘计算有什么特点
【边缘计算六大特点】
1、去中心化:
边缘计算从行业的本质和定义上来看,就是让网络、计算、存储、应用从“中心”向边缘分发,以就近提供智能边缘服务。
2、非寡头化:
边缘计算是互联网、移动互联网、物联网、工业互联网、电子、AI、IT、云计算、硬件设备、运营商等诸多领域的“十字入口”,一方面参与的各类厂商众多,另一方面“去中心化”在产品逻辑底层,就一定程度上通向了“非寡头化”。
3、万物边缘化:
边缘计算和早年的IT、互联网,如今的云计算、移动互联网,以及未来的人工智能一样,具备普遍性和普适性。
4、安全化:
在边缘计算出现之前,用户的大部分数据都要上传至数据中心,在这一上传的过程中,用户的数据尤其是隐私数据,比如个体标签数据、银行账户密码、电商平台消费数据、搜索记录、甚至智能摄像头等等,就存在着泄露的风险。
而边缘计算因为很多情况下,不要再把数据上传到数据中心,而是在边缘近端就可以处理,因此也从源头有效解除了类似的风险。
5、实时化:
随着工业互联网、自动驾驶、智能家居、智能交通、智慧城市等各种场景的日益普及,这些场景下的应用对计算、网络传输、用户交互等的速度和效率要求也越来越高。
6、绿色化:
数据是在近端处理,因此在网络传输、中心运算、中心存储、回传等各个环节,都能节省大量的服务器、带宽、电量乃至物理空间等诸多成本,从而实现低成本化、绿色化。
꧁꧂
边缘计算:
“边缘计算”是指在靠近物或数据源头的一侧,采用网络、计算、存储、应用核心能力为一体的开放平台,就近提供最近端服务。其应用程序在边缘侧发起,产生更快的网络服务响应,满足行业在实时业务、应用智能、安全与隐私保护等方面的基本需求。
边缘计算处于物理实体和工业连接之间,或处于物理实体的顶端。而云端计算,仍然可以访问边缘计算的历史数据。
简单来说,边缘计算,就是用网络边缘对数据进行分类,将部分数据放在边缘处理,减少延迟,从而实现实时和更高效的数据处理,以达到对云计算的有力补充。
⑸ 3.6mm和6mm的监控摄像头可以看到的画面角度是多少
3.6mm画面角度是96 °;6mm画面角度53 °。
摄像机照的有效范围都是根据镜头的大小而有所改变。以下是固定摄像机的镜头大小,所照的范围的角度、大小如下:
(5)摄像头边缘计算方法扩展阅读
监控摄像机镜头使用场所及角度
1、广角镜头:视角在90度以上,一般用于电梯轿厢内、大厅等小视距大视角场所;如2.8MM2.5MM。
2、视角在60度以上用于5*5米左右场所3.6MM4MM。
3、视角在50度以上用于8-10米左右场所6MM。
4、视角在40度以上用于10-18米左右场所8MM。
5、视角在30度以上用于20-30米左右场所12MM16MM6、视角在20度以上用于30-50米左右场所25MM。
7、长焦镜头:视角在20度以内,焦距的范围从几十毫米到上百毫米,用于远距离监视。
8、变焦镜头:镜头的焦距范围可变,可从广角变到长焦,用于景深大,视角范围广的区域;
9、针孔镜头:用于隐蔽监控。镜头越小,监控的面积越大,而图像物体相对较小。镜头越大,监控的面积越小(窄),而图像物体相对较大。
可以简单的计算方法:可视距离÷2就相等于所需镜头,再参考视角。
⑹ 边缘计算是什么
传统的计算方式是集中计算,
比如在安防领域,传统的是前端一个摄像头,中间经过网络,直接给服务器提供视频流,至于说要进行视频分析,那就是后端服务器的工作,这种方式把复杂的计算工作都放在了后端,造成后端计算比较繁重,无法支持较大规模的部署;
何谓边缘计算,就是把计算模块放在边缘端,比如放在摄像头上,那这样的话,和服务器质检复杂的媒体传输就变成了简单的报警指令传输,比如说摄像头识别到了报警,那只要把报警信息传给后台服务处理就好了,不用把视频也穿过去;
目前针对边缘处理这块,衍生了很多的架构,边云协同就是一个典型的架构,这个架构通过边缘计算模块和云端管理模块的相互配合,搭建了更灵活的部署方式;他可以通过云端对边缘侧的模型容器进行管理更新,更方便的实现边缘侧的算法更新,算法下发等工作;
⑺ 边缘计算是什么意思,有什么应用呢
台阶不算的,建筑面积是以外墙外边缘计算的。走廊的话,如果没有围护结构(通俗点说就是墙)的话,按投影面积的一半算建筑面积。有围护结构但层高小于2.2m的也算一般面积,大于2.2m时按全部面积计算。