A. 范德蒙得行列式怎么计算
套入阶范德蒙行列式即可及时,即
(1)分块范德蒙行列式的计算方法扩展阅读:
一个e阶的范德蒙行列式由e个数c₁,c₂,…,cₑ决定,它的第1行全部都是1,也可以认为是c₁,c₂,…,cₑ各个数的0次幂,它的第2行就是c₁,c₂,…,cₑ(的一次幂),它的第3行是c₁,c₂,…,cₑ的二次幂,它的第4行是c₁,c₂,…,cₑ的三次幂,…,直到第e行是c₁,c₂,…,cₑ的e-1次幂。
B. 分块行列式的计算公式是什么
一般行列式如果其各项数值不太大的话,可根据行列式“Krj+ri”和“Kcj+ci”不改变行列式值的性质将行列式化成上三角形和下三角形,用乘对角线元素的办法求行列式的值。
相当于矩阵的初等变换。但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。
分块矩阵是高等代数中的一个重要内容,是处理阶数较高的矩阵时常采用的技巧,也是数学在多领域的研究工具。
对矩阵进行适当分块,可使高阶矩阵的运算可以转化为低阶矩阵的运算,同时也使原矩阵的结构显得简单而清晰,从而能够大大简化运算步骤,或给矩阵的理论推导带来方便。有不少数学问题利用分块矩阵来处理或证明,将显得简洁、明快。
C. 分块行列式的计算公式是什么
分块行列式的计算公式是:”Krj+ri”和“Kcj+ci”。
将一个矩阵用若干条横线和竖线分成许多个小矩阵,将每个小矩阵称为这个矩阵的子块,以子块为元素的形式上的矩阵称为分块矩阵。
性质:
①同结构的分块上(下)三角形矩阵的和(差)、积(若乘法运算能进行)仍是同结构的分块矩阵。
② 数乘分块上(下)三角形矩阵也是分块上(下)三角形矩阵。
③ 分块上(下)三角形矩阵可逆的充分必要条件是的主对角线子块都可逆;若可逆,则的逆阵也是分块上(下)三角形矩阵。
④ 分块上(下)三角形矩阵对应的行列式。
D. 行列式分块计算方法
E. 范德蒙得行列式怎么计算
范德蒙得行列式如下图:
一个e阶的范德蒙行列式由e个数c1,c2,…,ce决定,它的第1行全部都是1,也可以认为是c1,c2,…,ce各个数的0次幂,它的第2行就是c1,c2,…,ce(的一次幂),它的第3行是c1,c2,…,ce的二次幂,它的第4行是c1,c2,…,ce的三次幂,…,直到第e行是c1,c2,…,ce的e-1次幂。
利用行列式展开法则,按第5列展开,得到的展开式如下:
A15 + (-A25) * x + A35 * x^2 + (-D) * x^3 + A55 * x^4 [其中A为代数余子式,D为前面的四阶行列式的值]
由范德蒙行列式计算公式,得出该五阶行列式的值为:
(b-a)(c-a)(c-b)(d-a)(d-b)(d-c)(x-a)(x-b)(x-c)(x-d)
它和上面的展开式相等,我们所需要的是行列式D的值,所以我们需要算的就是展开式中x^3的系数,所以得出D=(a+b+c+d)(b-a)(c-a)(c-b)(d-a)(d-b)(d-c)
F. 几种特殊行列式的计算方法
这些特殊行列式包括三角行列式、范德蒙行列式、奇数阶反对称行列式、形似三角行列式的分块行列式。本文重点讲述前三种行列式。
1.三角行列式
根据对角线位置的不同,可以分为主对角线三角行列式和副对角线三角行列式。
主对角线(或副对角线)三角行列式又根据零元素所在位置分为上三角行列式和下三角行列式。
对于三角行列式,一个非常容易混淆的概念是上三角行列式和下三角行列式。上三角行列式是对角线下方的元素全为零,下三角行列式是对角线上方的元素全为零!
三角行列式的应用非常广泛,因为它提供了一种计算行列式的有效方法:即将一个复杂的行列式通过初等变换,将之化为上三角或下三角行列式,然后根据公式即可快速求得行列式的值。
范德蒙行列式的重要特征是,第一行(或第一列)元素全为0,且每行(或每列)的元素构成等比数列。
范德蒙行列式的证明可以通过行列式的初等行(列)变换,将之化为三角行列式来证明。
通过添加辅助行和辅助列,使得行列式变为标准的范德蒙行列式。此时,如果将m视为一个变量,那么上述行列式对辅助列进行展开,那么就会得到一个关于m的多项式。
3.奇数阶反对称行列式
反对称行列式,就是主对角线两侧元素关于主对角线反对称,且主对角线元素为0。
对于奇数阶反对称行列式,其值为0。证明从略。
需要提醒一点的是,对称行列式的主对角线元素不需要一定为0!
G. 行列式的计算方法
行列式的计算方法如下:
1、逆推法:逆推法主要是建立起来两个行列式之间的一个递推关系式,将整个式子逐步的推下去,从而可以求出来一个具体的值。
2、范德蒙行列式:范德蒙行列式的用法主要是将一些行列式的特点找到变形的一些地方,将我们需要求的一个行列式化成一个已知的或者是简单的形式,而这一种解题方法我们就叫做范德蒙行列式,这也是一种最为常见最为常用到的解题方法。
行列式的性质
1、单位矩阵的行列式为 1 ,与之对应的是单位立方体的体积是 1。
2、行列式的某一行(列)中所有的元素都乘以同一数k,等于用数k乘此行列式。
3、在消元的过程中,行列式不会改变,如果有行交换的话,符号不同。