导航:首页 > 计算方法 > 数值计算方法简述

数值计算方法简述

发布时间:2022-12-06 09:31:08

A. 数值分析的内容简介

本书介绍了科学计算中常用数值分析的基础理论及计算机实现方法。主要内容包括:误差分析、插值、函数逼近、数值积分和数值微分、非线性方程的数值解法、线性方程组的直接解法、线性方程组的迭代解法、常微分方程的数值解法及相应的上机实验内容等。各章都配有大量的习题及上机实验题目,并附有部分习题的参考答案及数学专业软件Mathematica和Matlab的简介。本书采用中、英两种语言编写,适合作为数学、计算机和其他理工类各专业本科“数值分析(计算方法)”双语课程的教材或参考用书,也可供从事科学计算的相关技术人员参考。

B. 简述边坡稳定分析的条分法和数值计算方法的异同点

边坡稳定性是指边坡岩、土体在一定坡高和坡角条件下的稳定程度。按照成因,边坡分为天然斜坡和人工边坡两类,后者又分为开挖边坡和堤坝边坡等。按照物质组成,边坡分为岩体边坡、土体边坡,以及岩、土体复合边坡3种。按照稳定程度,分为稳定边坡、不稳定边坡,以及极限平衡状态边坡

C. 数值分析的内容简介

本书以收敛性、复杂性、条件作用、压缩和正交性这5个主要思想为核心进行展开。内容包括求解方程组、插值、最小二乘、数值微分、数值积分、微分方程及边值问题、随机数及其应用、三角插值、压缩、最优化等。每章都有一个实例检验,有助于读者了解到相关应用领域。附录中介绍了矩阵代数和MATLAB,并提供了部分习题的答案。
本书内容广泛,实例丰富,可作为自然科学、工程技术、计算机科学、数学、金融等专业人员进行教学和研究的参考书。

D. 数值分析的内容简介

《数值分析(高校教材)》系统地阐述了数值分析的基本知识,介绍了各种数值计算方法,全书共分十三章。第一章介绍数值计算的基本概念和误差分析的知识;第二章介绍非线性方程的数值解法,包括二分法、迭代法、牛顿法和弦截法;第三章介绍函数插值,包括拉格朗日插值和牛顿插值;第四章介绍数值微分及理查森外推法;第五章介绍数值积分,包括梯形法、龙贝格算法和辛普生法;第六章介绍线性方程组的求解,包括高斯消去法、解三对角线方程组的追赶法、LU分解法、雅可比迭代法、赛德尔迭代法及松弛法;第七章介绍非线性方程组的求解,包括雅可比迭代法、赛德尔迭代法、松弛法及牛顿一拉夫森法;第八章介绍样条函数在插值及数值微分中的应用;第九章介绍回归分析方法,包括一元线性回归、多元线性回归及多项式拟合;第十章介绍常微分方程的数值解,包括求解初值问题的欧拉法、四阶龙格一库塔法和求解边值问题的打靶法、有限差分法;第十一章介绍三种典型偏微分方程的数值解法,包括求解抛物型方程的显式差分、隐式差分和克拉克一尼科尔森六点格式及求解双曲型方程、椭圆型方程的有限差分法;第十二章介绍最优化方法,包括单变量函数优化的黄金分割法、插值法、无约束多变量函数优化的单纯形法和有约束优化的BOX复合形法;第十三章介绍Monte Carlo模拟的应用,包括在数值积分、数学建模、高分子科学研究中的应用。

E. 数值分析的内容简介

本书首先介绍了matlab语言程序设计的基本内容,在此基础上系统介绍了各个应用数学领域的问题求解,如基于matlab的微积分问题、线性代数问题的计算机求解、积分变换和复变函数问题、非线性方程与
最优化问题、常微分方程与偏微分方程问题、数据插值与函数逼近问题、概率论与数理统计问题的解析解和数值解法等,还介绍了较新的非传统方法,如模糊逻辑与模糊推理、神经网络、遗传算法、小波分析、粗糙集及分数阶微积分学等领域。
本书可作为高等学校理工科各专业本科生和研究生学习计算机数学语言的教材和参考书,也可供科技工作者、教师学习和应用matlab语言解决实际数学问题时参考,还可作为读者查询某数学问题求解方法的手册。

阅读全文

与数值计算方法简述相关的资料

热点内容
挂钟制作方法简单 浏览:923
电脑版全然不信下载方法 浏览:250
家庭教育有哪些教育方法 浏览:825
起诉离婚的方法有哪些 浏览:431
用简便方法怎么算乘法 浏览:52
雪碧是怎么做的简单方法 浏览:464
如何快速找到野生蜜蜂巢方法 浏览:981
人文思辨类文章有哪些研究方法 浏览:55
笋壳斑去除的最佳方法 浏览:287
经络锻炼的好方法 浏览:888
黑面膜使用方法 浏览:432
视觉思维模式的创新的研究方法 浏览:888
用什么方法不腐烂 浏览:317
多元醇酯类化合物液相分析方法 浏览:304
举手之劳解决的方法 浏览:932
武汉石膏线安装方法 浏览:657
治疗手机卡顿闪退的方法 浏览:570
周岁的计算方法法律 浏览:668
投影仪安装方法图 浏览:524
迷宫的使用方法 浏览:758