导航:首页 > 计算方法 > 符号计算方法的傅里叶变换

符号计算方法的傅里叶变换

发布时间:2022-11-28 21:51:41

如何理解傅里叶变换公式

1、傅里叶变换公式

(1)符号计算方法的傅里叶变换扩展阅读:

根据原信号的不同类型,可以把傅里叶变换分为四种类别:

1、非周期性连续信号傅里叶变换(Fourier Transform)

2、周期性连续信号傅里叶级数(Fourier Series)

3、非周期性离散信号离散时域傅里叶变换(Discrete Time Fourier Transform)

4、周期性离散信号离散傅里叶变换(Discrete Fourier Transform)

❷ 符号函数f(t)=sgn(t)的傅里叶变换f(jω)为

符号函数不是绝对可积的函数,不存在常义下的傅里叶变换。在考虑广义函数的条件下是可求的,但不能用定义式F(jw)=∫f(t)e^{-jwt}dt来求,可以这样求:

首先已知F{δ(t)}=1,且2δ(t)=d(sgn(t))/dt。根据频域微分定理F{f'(t)}=jwF{f(t)},有F{2δ(t)}=jwF{sgn(t)},得到F{sgn(t)}=2/(jw)

函数的近代定义

是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。

❸ 傅里叶变换及其性质

对函数x(t)进行如下积分,并记为X(ω):

地球物理数据处理基础

其中 这称为傅里叶正变换,X(ω)是x(t)的傅里叶变换。利用X(ω)可以重构信号函数x(t),即

地球物理数据处理基础

称为傅里叶反变换。两式组成一个傅里叶变换对。若t代表空间坐标变量,则ω就代表空间频率域的频率变量,因此称X(ω)为x(t)的频谱函数。

傅里叶变换的性质:设f(x),g(x)的傅里叶变换分别是F(ξ),G(ξ),那么

(1)线性 af(x)+bg(x)的傅里叶变换是aF(ξ)+bG(ξ)(a,b是常数);

(2)褶积(或卷积)f(x)*g(x)=∫-∞f(u)g(x-u)的傅里叶变换是F(ξ)·G(ξ);

(3)翻转 f(-x)的傅里叶变换是F(-ξ);

(4)共轭 的傅里叶变换是

(5)时移(延迟) f(x-x0)的傅里叶变换是eix0ξF(ξ);

(6)频移(调频) F(ξ-ξ0)是f(x)e-iξ0x的傅里叶变换(ξ0是常数)。

上面的定义都是连续型傅里叶变换,然而在地球物理实际计算中都是离散型数据,因此我们感兴趣的是数据是离散的情况,需要将上述傅里叶变换化为有限离散傅里叶变换对:

地球物理数据处理基础

其中N是数据点数。两个公式除了系数和指数的符号不同外,结构基本相同,式(8-3)为离散傅里叶变换(DFT),式(8-4)为离散傅里叶反变换(IDFT)。

❹ matlab分段符号函数傅里叶变换

syms x
y=(heaviside(x+1)-heaviside(x-1))*(1+cos(x));
fy=fourier(y)

❺ 求符号函数的傅里叶变换

答案如下图:

(5)符号计算方法的傅里叶变换扩展阅读:

傅里叶变换的作用:

1、傅立叶变换为一种分析信号的方法,可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。

2、傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成频率谱——显示与频率对应的幅值大小)。

3、和傅里叶变换算法对应的是反傅里叶变换算法。该反变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号。

❻ f=coswt的傅里叶变换怎么

根据欧拉公式,cosω0t=[exp(jω0t)+exp(-jω0t)]/2。

直流信号的傅里叶变换是2πδ(ω)。

根据频移性质可得exp(jω0t)的傅里叶变换是2πδ(ω-ω0)。

再根据线性性质,可得

cosω0t=[exp(jω0t)+exp(-jω0t)]/2的傅里叶变换是πδ(ω-ω0)+πδ(ω+ω0)。

(6)符号计算方法的傅里叶变换扩展阅读

计算离散傅里叶变换的快速方法,有按时间抽取的FFT算法和按频率抽取的FFT算法。前者是将时域信号序列按偶奇分排,后者是将频域信号序列按偶奇分排。

它们都借助于的两个特点:一是周期性;二是对称性,这里符号*代表其共轭。这样,便可以把离散傅里叶变换的计算分成若干步进行,计算效率大为提高。

时间抽取算法令信号序列的长度为N=2,其中M是正整数,可以将时域信号序列x(n)分解成两部分,一是偶数部分x(2n),另一是奇数部分x(2n+1),于是信号序列x(n)的离散傅里叶变换可以用两个N/2抽样点的离散傅里叶变换来表示和计算。考虑到和离散傅里叶变换的周期性,式⑴可以写成

⑶其中(4a)(4b)由此可见,式⑷是两个只含有N/2个点的离散傅里叶变换,G(k)仅包括原信号序列中的偶数点序列,H(k)则仅包括它的奇数点序列。虽然k=0,1,2,…,N-1,但是G(k)和H(k)的周期都是N/2,它们的数值以N/2周期重复。

❼ 音频算法入门-傅里叶变换

    上一篇文章中讲了一个时域处理的算法wsola,接下来会学习频域处理算法,在这之前必须得对频域有所了解,这就不得不提傅里叶变换了,本文的目的是让大家学会用傅里叶变换公式和傅里叶逆变换公式进行计算。数学公式是人们对世界中的现象的描述,我们学习数学公式也不该只停留在使用公式来解决问题的层次,得明白公式到底在描述什么现象,从这些天才数学家的角度来看世界。懂的地方可跳过。项目地址在文章末尾给出。

   我直接说结论,傅里叶级数公式包含了傅里叶变换和傅里叶逆变换(不严谨的说就是这么回事)。
    先简单说下具体关系,法国数学家傅里叶发现,任何周期函数都可以用正弦函数和余弦函数构成的无穷级数来表示,这种表示方式就是傅里叶级数。假如有个波形比较复杂的周期函数,那么找出能用来构成这个周期函数的正弦函数和余弦函数的频率的方法就叫做傅里叶变换,用这些频率的正弦函数和余弦函数叠加起来表示这个周期函数的方法就叫做傅里叶逆变换。
    再从公式中看下他们的关系,首先介绍傅里叶级数到底是什么,首先级数是指将数列的项依次用加号连接起来的函数。这么说可能大家还不理解,举个例子:e^x=1+x/1!+x^2/2!+...x^n/n!....,等号左边是指数函数,等号右边就是级数。傅里叶级数公式如下:

    我们主要看这个指数形式的傅里叶级数公式,把求和符号去掉,展开一下就是f(t)=Fa*e^jaω0t+Fb*e^jbω0t+Fc*e^jcω0t+Fd*e^jdω0.....。现在看下面的周期函数叠加效果图,图中显示的是3个周期函数分别在坐标轴(横轴时间,纵轴幅度)的图像,写成傅里叶级数形式就是f(t)=fa(t)+fb(t)+0+0....,这就是傅里叶级数公式要描述的现象。其中Fa*e^jaω0t=fa(t),Fb*e^jbω0t=fb(t),Fc*e^jcω0t=0....。

    看下图的傅里叶变换和逆变换公式,你会发现傅里叶逆变换公式和傅里叶级数公式极其相似,而傅里叶级数系数公式Fn又和傅里叶变换公式极其相似。所以对一个周期函数进行傅里叶级数展开的过程可以认为是先做傅里叶变换再做傅里叶逆变换的过程。

    上图就是傅里叶变换公式也叫连续傅里叶变换公式,有个很重要的事情,就是傅里叶变换公式和逆变换公式一定要一起给出,不然就会让人误解,你们在网上会看到各种各样的写法,但这些写法都是对的,常见的如下图所示。

    为了方便后面的讲解我把角频率ω换成2πf,如上图所示,ω是希腊字母读作Omega,大写是Ω,小写是ω,以后这两个字母会经常看到,都是等于2πf。不要和电学中的电阻单位搞混了,要明白字母只不过是一个符号而已,在不同学科领域都是混着用的,只要不和自己公式中其他字母冲突就行,例如上图傅里叶变换公式中的j其实就是虚数单位i,一般时候我们会把虚数单位写成i,但因为傅立叶变换经常用于电学解决一些问题,为了不和电流符号i混淆,所以公式就把i写成j 。
    要想了解傅里叶变换公式,首先要了解欧拉公式e^ix=cosx+isinx在图像中的含义。以实部的值cosx作为横坐标值,虚部sinx的值作为纵坐标值,x的取值从负无穷到正无穷,画出所有的e^ix点后,你会发现这些点会形成一个周期为2π的圆。如下图1所示(如果不理解,建议看3Blue1Brown的视频,视频连接:https://www.bilibili.com/video/BV1pW411J7s8)

    所以欧拉公式e^ix其实就是随着x的增大而在坐标系上逆时针画圆的过程,那么e^-ix就表示顺时针画圆,e^-i2πx就表示画圆的速度提高2π倍,也就是说x从0到1的过程就是顺时针画出一个完整圆的过程(当然x从1到2或者2到3等等,都能画出一个完整的圆),把x换成t后,e^-i2πt表示每秒都会顺时针画出一个圆。e^-i2πft表示每秒都会顺时针画出f个圆。f(t)表示t时刻的振幅,f(t)函数画出来就是时域波形图。f(t)*e^-i2πft表示每经过1秒会顺时针画出f个圆,并在画圆的同时,t时刻的圆半径要乘上t时刻的振幅,其实就是以每秒的音频振幅数据绕f圈的速度进行旋转缠绕(为了方便理解,没有用复杂的音频数据,用的是一个频率为3的正弦波音频做的实验,请看下图2,图的上半部分是时域波形图,图的左下角是f等于0.4的时候,用公式f(t)*e^-i2πft在实部和虚部构成的坐标系画的图,图的右下角是频谱图,频谱图的横坐标是频率,纵坐标是振幅,振幅的值就是左下角图中数据形成的图案的质心(图中的红点)到坐标系原点的距离的2倍)。当改变f的值,你会发现数据大多数时候是和我们想的一样,以坐标系原点为圆心环绕着,也就是振幅一直都是0,但是当f的值,也就每秒的圈数等于该音频数据的频率时,你会发现一个神奇的现象,那就是所有的数据会在实部或虚部坐标轴的一侧形成一个圆(如下图3所示,如此一来就知道这段音频数据包含了一个频率为3振幅为0.5的正弦波)。所以将多个正弦波叠加的音频数据用傅里叶公式,f从负无穷到正无穷遍历一遍,就可以把这个音频数据里包含的正弦波都一一找出来。(如果不理解,建议看3Blue1Brown的视频,视频连接:https://www.bilibili.com/video/BV1pW411J7s8)

    平时我们说的对音频进行傅里叶变换处理,其实说的是短时离散傅里叶变换。短时离散傅里叶变换的公式(也可以直接叫做离散傅里叶变换公式)如下。

    下面将教大家如何理解这个公式。上面说的连续傅里叶变换公式中有两个原因导致我们无法使用,第一点要求是音频数据的时间从负无穷到正无穷,第二点要求是任意时间t都要有幅度值x(t)才能代入公式进行计算。所以为了解决这两个问题,把公式变为短时且离散的傅里叶变换公式,这个公式可以把一段时间(时间假设为Ts秒)的离散音频数据(有N个采样数据)进行傅里叶变换。你可以把离散傅里叶变换公式理解成连续傅里叶变换的变形,最重要的一点是连续傅里叶变换公式的f和离散傅里叶变换公式的k不是一个意思,他们的关系是k=f*Ts。所以离散傅里叶变换公式也可以写成F(f)=1/n*∑f(t)*e^-j2πf*Ts*n/N,其中的Ts*n/N对应的就是连续傅里叶变换公式的t,只不过这个t没办法取任意时间了,t的取值也就随着n的取值成为了离散的时间点,所以前面的系数由1/2π变为1/N。这样这两个公式就对应起来了。下面将进一步详细介绍这个公式。
    上一段说了k=f*Ts,这段我来解释下为什么,其实离散傅里叶变换公式中k表示的是这段Ts秒的音频数据环绕坐标系原点的圈数,所以k并不是连续傅里叶变换公式里的频率f,而频率f指的是1秒钟震荡的次数,在这个公式中频率f也对应着1秒的音频数据环绕的圈数,所以真正的频率f=k/Ts。
    有人可能会好奇,那为什么不把离散傅里叶变换公式的自变量k换成f呢,这样不是更好理解吗?是会更好理解,但是没有必要,用f的话还要做一次无用的换算。因为采样点只有N个的原因,k的取值范围就被限制住了,k的取值范围只能是0~N-1的整数,这也是为什么用k来做自变量而不是用f的原因。
    还有人可能会好奇,傅里叶逆变换到底是怎么把频域的信息还原回时域的,其实公式计算出来的F(k)是一个复数,这个复数包含了这个频率的周期函数的振幅和相位的信息,假设F(k)=a+ib,,F(k)的模|F(k)|=(a^2+b^2)^1/2,频率f=k/Ts时的振幅为|F(k)|*2(因为求出来的值相当于圆心,但实际上振幅是圆离圆心最远点到坐标原点的距离,所以要乘2),频率f=k/Ts时的相位为arctan(b/a)。所以如果你知道一个周期函数包含了哪些频率的周期函数,并且你这到这些周期函数的振幅和相位,你就可以像下图一样把fa(t)和fb(t)叠加在一起还原回f(t)。傅里叶逆变换的做法略有不同,但意思就是这么个意思,理解了离散傅里叶变换公式的计算,逆变换其实也是差不多代入数值计算就是了。(如果不理解怎么用离散傅里叶变换公式计算,建议看视频,视频里有离散傅里叶变换完整的计算过程,视频连接:https://www.hu.com/zvideo/1276595628009377792)

快速傅里叶变换推荐看下面两个视频
https://www.bilibili.com/video/BV1za411F76U
https://www.bilibili.com/video/BV1Jh411d7CN
下面是我用java实现的离散傅里叶变换及逆变换和快速傅里叶变换及逆变换,从他们的运行时间就可以看出来快速傅里叶变换快得多。(学完快速傅里叶变换再想想频谱为何Y轴对称?为何N/2对称?)

❽ matlab是如何进行傅里叶变换的采用什么方法进行积分运算

第一步,双击matlab软件图标,打开matlab软件,可以看到matlab软件的界面。

2/8
第二步,使用syms命令,创建四个符号变量a、b、c、x、t。

simulink如何提升仿真速度_想告别蜗牛效率_找速石科技
速石CAE仿真云计算平台,即算即用,无需IT基础,本地怎么操作,上云就怎么操作让流体力学/有限元分析效率翻倍。欢迎免费试用。
上海速石信息科技有..广告
3/8
第三步,使用符号变量a,创建代数式A,其中A=7*sin(a)。

4/8
第四步,使用函数fourier(A,a,t),对代数式A进行傅里叶变换。得到的结果中diract(t-1)是狄拉克函数。

5/8
第五步,使用符号变量c,创建代数式B,其中A=3*c^2。

6/8
第六步,使用函数fourier(B,c,t),对代数式B进行傅里叶变换。得到的结果中dirac(2,t)是对狄拉克函数的二阶导数。

7/8
第七步,使用符号变量x,创建代数式C,其中C=abs(4*x)。

8/8
第八步,使用函数fourier(C,x,t),对代数式C进行傅里叶变换
matlab软件是一款科学计算软件,在工程和科学研究中应用广泛。这篇经验告诉你,如何使用matlab软件创建代数式,并对代数式进行傅里叶变换。

❾ 傅立叶变换怎么用

sinwt的傅里叶变换公式是cosω0t=[exp(jω0t)+exp(-jω0t)]/2。

计算离散傅里叶变换的快速方法,有按时间抽取的FFT算法和按频率抽取的FFT算法。前者是将时域信号序列按偶奇分排,后者是将频域信号序列按偶奇分排。

它们都借助于的两个特点:一是周期性;二是对称性,这里符号*代表其共轭。这样,便可以把离散傅里叶变换的计算分成若干步进行,计算效率大为提高。

变换提出

傅里叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。

当时审查这个论文的人,其中有两位是历史上着名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在他此后生命的六年中,拉格朗日坚持认为傅里叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。

法国科学学会屈服于拉格朗日的威望,拒绝了傅里叶的工作,幸运的是,傅里叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。直到拉格朗日死后15年这个论文才被发表出来。

❿ 傅立叶变换的公式

傅立叶变换的公式为:

(10)符号计算方法的傅里叶变换扩展阅读

如果t满足狄里赫莱条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值。在一个周期内具有有限个极值点、绝对可积。

傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成频率谱——显示与频率对应的幅值大小)。

为了在科学计算和数字信号处理等领域使用计算机进行傅里叶变换,必须将函数定义在离散点上而非连续域内,且须满足有限性或周期性条件。

阅读全文

与符号计算方法的傅里叶变换相关的资料

热点内容
我的世界准星旋转跳最简单的方法 浏览:442
物理如何改变音色的方法 浏览:218
快速激活脉冲箭的方法 浏览:322
进行偿债能力分析有哪些研究方法 浏览:635
小学语文有哪些理解方法 浏览:861
手机b站录屏的方法 浏览:950
产后腰疼的治疗方法新闻 浏览:358
苹果6拍的图片在哪里设置方法 浏览:745
坐骨结节痛的治疗方法 浏览:286
正确的血压测量方法图片 浏览:936
花生酱的保鲜方法有哪些 浏览:716
柱混泵施工方法视频 浏览:178
简述心理干预的常用技术方法 浏览:421
人工挖孔钢筋计算方法 浏览:110
脱发少的治疗方法 浏览:226
能变瘦的方法视频 浏览:865
眼皮跳土方法怎么治 浏览:264
裤子收纳最佳方法技巧 浏览:954
墨西哥豆子的种植方法 浏览:564
如何擦木制门方法 浏览:629