导航:首页 > 计算方法 > 积分的计算方法的不同之处是

积分的计算方法的不同之处是

发布时间:2022-11-22 03:37:05

⑴ 计算积分的方法有哪些

积分的计算包含两方面:一、基本思路是牛莱公式,利用不定积分的解题方法来计算;二、利用对称区间及函数的基本性质来解题,主要是运用函数的奇偶性。

⑵ 定积分和不定积分有什么相同点和不同点

相同点:都有换元法和分部积分法。

不同点:求定积分可以利用倒代换的方式,如x=1/t,x=a-t,得出形式间接得到结果。

如∫f(x)dx=c-∫f(t)dt,求解:而不定积分中对应的∫f(x)dx很可能无法得出结果,因此可说求定积分比求不定积分方法更加灵活。

定积分有几分上限和几分下限,不定积分没有。定积分的值就是用不定积分得到的结果,把上限带入结果减去下限带入结果的值:(上限带入不定积分结果)-(下限带入不定积分结果)=(定积分结果)。

解释:

定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

⑶ 定积分和不定积分的异同

不同:
不定积分 定积分
定义: 原函数族 分割、近似求和、取极限

“输入”: 函数f 函数f 及积分上下限a,b

“输出”结果 原函数族 实数(定积分值)
(包含积分常数)

相通:
1 变上限积分函数(即定积分值随上限变化产生的函数)即为一个原函数(加上积分常数后即为不定积分)
有些函数(如e^(-x^2))的原函数不是初等函数,也就是说不定积分写不出来。但是其定积分可以通过某些手段求得或近似求得,此时可以近似得用定积分的结果来计算原函数的某些性质,如增减性、极值、图像等等。

2 (牛顿-莱布尼茨公式): 定积分的值可以表示为函数的任意一个原函数(可以通过不定积分来求解)在积分上下限的函数值之差。
由于这个公式的存在,我们一般是通过计算不定积分的结果来计算定积分的。

3 两种积分的存在性是相同的。由于不定积分的存在性较难讨论,我们一般是通过被积函数在任意区间上的定积分是否存在来讨论函数是否“可积”的。

⑷ 二重积分与定积分有哪些相同和不同之处

二重积分是定积分概念的推广,因此,两者有许多相同之处.从定义上看,二重积分也表示为和式极限,该极限也是通过“分割、近似代替、求和、取极限”而得到的.因而,其结果是一个数,这个数只与被积函数
及积分区域
有关,而与
的分法和点
的取法无关.二重积分还与定积分有相似的几何意义及性质.
二重积分与定积分的不同之处是,定积分的被积函数是一元函数,积分区域是区间;而二重积分的被积函数是二元函数,积分区域是平面区域.在定积分定义中,用小区间的长度的最大者来刻画分割的精细程度;在二重积分的定义中,用小区域的最大直径来刻画分割的精细程度,而不用小区域的面积最大者来刻画,这是因为小区间
的长度
越小,窄矩形面积
与以
为底边,
为曲边的窄曲边梯形面积的近似程度就越高.但在平面上,小区域的面积
越小,却不能保证小平顶柱体体积
与以此小区域为底面,
为曲顶的小曲顶柱体体积的近似程度就越高.如小区域是非常窄的小长条,面积
虽小,但在其上任取一点

与对应的小曲顶柱体的体积差异可能会很大,而且随着长条变窄,
变小,这种差异可能不会改变.此外,在定积分定义中,
可正可负,因而定积分的下限可小于也可大于上限;而在二重积分定义中,
表示面积,只能为正,因此,将其化为累次积分时,每个定积分的下限都必须小于上限.

⑸ 定积分与不定积分的换元法有何区别与联系

定积分与不定积分的换元法区别为:代回不同、定义范围不同、积分要求不同。联系:不定积分的实质是求一个函数的原函数组成的集合,部分定积分的计算可以利用不定积分的第一换元法求出简单函数f (x)的任意一个原函数F(x),再用原函数在定义域的上下限的函数值取差值。

一、代回不同

1、定积分的换元法:定积分的换元法代换时上下限要做相应的变化,最后不必代回原来的变量。

2、不定积分的换元法:不定积分的换元法最后必须代回原来的变量。

二、定义范围不同

1、定积分的换元法:定积分的换元法对未知量x给出了定义的范围。

2、不定积分的换元法:不定积分的换元法对未知量x未限制定义的范围。

三、积分要求不同

1、定积分的换元法:定积分的换元法要求换元函数φ(x)必须在定义域内一阶连续可导,对积分要求更低。

2、不定积分的换元法:不定积分的换元法要求换元函数φ(x)一阶连续可导即可,对积分要求更高。

⑹ 积分是如何计算的

电信积分是根据您的实际消费计算的积分(即消费实缴费用),每消费一元积一分。
再以您的消费积分为基数,乘以星级对应的积分倍数。不同星级回馈不同的积分倍数。
1星是1倍,2星是1.5倍,3星是2倍,4星是2倍,5星是3倍,6星是4倍,7星是5倍。

⑺ 定积分与不定积分的区别是什么

不定积分计算的是原函数(得出的结果是一个式子)
定积分计算的是具体的数值(得出的借给是一个具体的数字)

不定积分是微分的逆运算
而定积分是建立在不定积分的基础上把值代进去相减

积分
积分,时一个积累起来的分数,现在网上,有很多的积分活动。象各种电子邮箱,qq等。

在微积分中
积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。

一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。

其中:[F(x) + C]' = f(x)

一个实变函数在区间[a,b]上的定积分,是一个实数。它等于该函数的一个原函数在b的值减去在a的值。
http://ke..com/view/61339.htm

定积分
我们知道,用一般方法,y=x^2不能求面积(以x轴,y=x^2,x=0,x=1为界)
定积分就是解决这一问题的.
那摸,怎摸解呢?
用定义法和 微积分基本定理(牛顿-莱布尼兹公式)
具体的,导数的几条求法都知道吧.
微积分基本定理求定积分
[img]http://www.pep.com.cn/images/200503/pic_231569.jpg[/img]导数的几条求法在这里
进行逆运算
例:求f(x)=x^2在0~1上的定积分

∫(上面1,下面0)f(x)dx=F(x)|(上面1,下面0)=(三分之一倍的x的三次方)|(上面1,下面0)≈0.3333×1-0.3333×0=0.3333(三分之一)
完了
应该比较简单
http://ke..com/view/392188.htm

不定积分
设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分,记作,即∫f(x)dx=F(x)+C.
其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分.
由定义可知:
求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C,就得到函数f(x)的不定积分.
http://ke..com/view/335446.htm

总体来说定积分和不定积分的计算对象是不同的
所以他们才有那么大的区别

⑻ 定积分和不定积分的异同

最低0.27元/天开通网络文库会员,可在文库查看完整内容>
原发布者:云烟纵横
不定积分与定积分的区别与联系不定积分计算的是原函数(得出的结果是一个式子)定积分计算的是具体的数值(得出的借给是一个具体的数字)不定积分是微分的逆运算,而定积分是建立在不定积分的基础上把值代进去相减积分积分,时一个积累起来的分数,现在网上,有很多的积分活动。象各种电子邮箱,qq等。在微积分中,积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的.一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。其中:[F(x)+C]'=f(x)一个实变函数在区间[a,b]上的定积分,是一个实数。它等于该函数的一个原函数在b的值减去在a的值.定积分就是把直角坐标系上的函数的图象用平行于y轴的直线把其分割成无数个矩形,然后把某个区间[a,b]上的矩形累加起来,所得到的就是这个函数的图象在区间[a,b]的面积。实际上,定积分的上下限就是区间的两个端点a,b.不定积分设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分,记作,即∫f(x)dx=F(x)+C.其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分.由定义可知:求函数f(x)的不定积分,就是要求出f(x)的所有的

⑼ 定积分和不定积分有何区别

定积分确切的说是一个数,或者说是关于积分上下限的二元函数,也可以成为二元运算,可以这样理解∫[a,b]f(x)dx=a*b,其中*即为积分运算(可以类比简单的加减运算,只不过这时定义的法则不一样,加减运算是把二维空间的点映射到一维空间上一个确定的点,定积分也一样,只不过二者的法则不一样);
不定积分也可以看成是一种运算,但最后的结果不是一个数,而是一类函数的集合.
对于可积函数(原函数是初等函数)存在一个非常美妙的公式
∫[a,b]f(x)dx=F(b)-F(a)
其中F'(x)=f(x)或∫f(x)dx=F(x)+c

最后附上一句,积分这一章难度较大,要学好这一章首先要把微分运算弄得很清楚,同时常用的公式也要记.而且有些定积分是不能通过牛顿-莱布尼茨公式计算的,如∫[0,∞]sinx/xdx=π/2(用留数算的),∫[0,∞]e^(-x^2)dx=√2/2(用二重积分极坐标代换算的),以上两种积分的原函数都不能用初等函数表示,因此也就不能用牛顿-莱布尼茨公式计算,当你不知道这些的时候可能花一年的功夫也没有丝毫进展.我当年就是深有感触的,我是在高一入学前的暑假自学的微积分,高一的时候遇到一个定积分∫[0,π/2]dx/√(sinx),开始不知道这是一个超越积分,所以高一只要有空余时间我就会计算这个定积分,直到高二学完伽马函数后才计算出其值为(Γ(1/4))^2/(2√(2π)),并由此得出不定积分∫dx/√(sinx)也是超越积分.常见的超越积分还有很多,尤其像那种三角函数带根号的,多半都是超越的,自学时要注意

⑽ 为什么两种不定积分的算法答案不同

对于不定积分,算法不同,结果不同是正常的,但是最后得到的原函数一定只相差一个常数。原因就是,不定积分的结果不是一个数,而是一个函数族{F(x)+C|C是任意实数},这个函数族内的函数写成F(x)+C,F(x)+a+C(a是个具体的数)都是可以的,C可以“吸收”任意其它的实数a。

阅读全文

与积分的计算方法的不同之处是相关的资料

热点内容
学生提分方法怎么写 浏览:306
国标中检测金葡萄球菌的三种方法 浏览:803
文言文划分停顿的方法有哪些 浏览:343
检测酶活性方法 浏览:226
常用心理测验的应用方法 浏览:518
快速取戒指的方法 浏览:518
紫甘蓝正确服用方法 浏览:751
喉原位癌早期浸润的治疗方法 浏览:297
桂花树苗嫁接方法视频 浏览:954
如何判断出货方法 浏览:627
每个模块那么多方法如何记 浏览:4
巯基乙酸单甘油酯检测方法 浏览:147
尖锐疣治疗的方法 浏览:798
使用什么方法解决 浏览:800
搓澡神器使用方法 浏览:388
闭角青光眼后期治疗方法 浏览:722
清洗瓷砖方法有哪些 浏览:557
汽车漆面划痕有什么补救方法 浏览:761
快速洗纹身方法 浏览:979
女性夜尿多锻炼方法 浏览:446