Ⅰ 如何使用普通计算器进行复数运算
使用方法:
1、利用计算器进行复数计算必须要用计算器的度,按DRG键,使计算器显示窗中要有“DEG”标致。
2、让计算器进入复数运算状态,分别按2ndF和CPLX,显示窗中有“CPLX”标致。
3、表示计算器只能进行复数的运算,而进行其它计算则是无效的。取消则重复进行即可。进行复数的加减乘除运算时计算器必须处于复数运算状态。
Ⅱ 复数如何运算
负数的运算包括加法法则,乘法法则,除法法则,开方法则,运算律,i的乘方法则等。具体运算方法如下:
1.加法法则
复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。即
Ⅲ 复数计算法则
加法法则复数的加法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,则它们的和是
(a+bi)+(c+di)=(a+c)+(b+d)i.两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。复数的加法满足交换律和结合律,即对任意复数z1,z2,z3,有:
z1+z2=z2+z1;
(z1+z2)+z3=z1+(z2+z3).减法法则复数的减法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,则它们的差是
(a+bi)-(c+di)=(a-c)+(b-d)i.两个复数的差依然是复数,它的实部是原来两个复数实部的差,它的虚部是原来两个虚部的差。乘法法则规定复数的乘法按照以下的法则进行:设z1=a+bi,z2=c+di(a、b、c、d∈R)是任意两个复数,那么它们的积(a+bi)(c+di)=(ac-bd)+(bc+ad)i.其实就是把两个复数相乘,类似两个多项式相乘,展开得:
ac+adi+bci+bdi^2,因为i^2=-1,所以结果是(ac-bd)+(bc+ad)i
。两个复数的积仍然是一个复数。除法法则复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R)叫复数a+bi除以复数c+di的商运算方法:可以把除法换算成乘法做,在分子分母同时乘上分母的共轭.
所谓共轭你可以理解为加减号的变换,互为共轭的两个复数相乘是个实常数.除法运算规则:①设复数a+bi(a,b∈R),除以c+di(c,d∈R),其商为x+yi(x,y∈R),即(a+bi)÷(c+di)=x+yi∵(x+yi)(c+di)=(cx-dy)+(dx+cy)i.∴(cx-dy)+(dx+cy)i=a+bi.由复数相等定义可知
cx-dy=a
dx+cy=b解这个方程组,得
x=(ac+bd)/(c^2+d^2)
y=(bc-ad)/(c^2+d^2)于是有:(a+bi)/(c+di)=(ac+bd)/(c^2+d^2)
+(bc-ad)/(c^2+d^2)i
②利用共轭复数将分母有理化得
Ⅳ 复数的计算方法
(a+bi)+(c+di)=(a+c)+(b+d)i
(a+bi)-(c+di)=(a-c)+(b-d)i
(a+bi)(c+di)=ac+bci+adi+bd·i^2=(ac-bd)+(ad+bc)i
符合的实数正常运算法则
直接乘出来再合并就行
(a+bi)/(c+di)=(ac+bd)/(c^2+d^2)+[(bc-ad)/(c^2+d^2)]i
Ⅳ 求复数计算方法 举几个例子
1、加减法:实数对实数,虚数对虚数( 3+2i)+(-1-6i)=2-4i
2、乘法:注意i^2=-1,( 3+2i)x(-1-6i)=3x(-1)+3x(-6i)+2ix(-1)+2ix(-6i)=-3-18i-2i-12xi^2=-3-20i+12=9-20i
总结一下就是(a+bi)(c+di)=(ac-bd)+(bc+ad)i。
3、除法:(a+bi)/(c+di) =(a+bi)*(c-di)/(c+di)*(c-di) (就是将分母上乘上一个共轭的虚数,利用平方差公式可以将分母变成实数,然后分子上的求法同乘法。
4、乘方:i^(4n+1)=i,i^(4n+2)=-1,i^(4n+3)=-i,i^4n=1(不用记,记得i平方为-1,很容易算)
5、欧拉公式:e^ix=cosx+isinx,遇到三角函数的问题,一般用它来解决。
6、关于复数的绝对值,也就是复数的模:|a+bi|=根号下(a^2+b^2)
Ⅵ 复数是怎么计算的
(A)复数的极式:
若点P代表z=x+iy,O为原点,线段OP与x轴正向所夹的有向角为 。
令OP=r,则r, ,x,y有如下的关系:x=rcos ,y=rsin ,上述的r称为复数
z的绝对值,以 表示。 称为复数的幅角,以argz表示,我们规定介于0,
2之间的幅角称为主幅角,以Argz表示。一个复数的幅角很多,但主幅角只
有一个。即 ,0Argz<2
结论:将复数z=x+iy表示成 则称为复数z的极式。
[例题1] 将下列各复数化为极式:
(1)z=33i (2)z= (3)z=sin15+icos15(4)z=cos13+icos77
[例题2] 设z为复数,且| z1z |= 12,Arg(z1z)= 3 ,则z=? Ans:1+33 i
(B)复数极式的乘除法:
(1)复数的乘法:
设z1,z2之极式分别为z1=r1(cos+isin),z2=r2(cos+isin)
则
即将复数z1,z2相乘时,其绝对值相乘而其幅角相加。
(2)复数的除法:
(a)若 ,则 。
(b)若 ,则
(3)棣美弗定理:n为整数,若设 ,则zn=|z|n(cosn+isinn)。
[例题3] 试求下列之值:
(1)(cos100+isin100)(cos10isin10)(2) Ans:(1)i (2)12+32i
(C)解一元n次方程式:
(1)解zn=1之根:
例子:试解z7=1之根。(求1的7次方根)
结论:zn=1之根(1的n次方根)可表为 ,其中 。
(2)解zn=a之根:
例子:求1+i的7次方根。
结论: 之解(a的n次方根)为
。
[例题4] (1)试求1的5次方根,并将代表它们的点描在座标平面上。
(2)解方程式z4+z3+z2+z+1=0。
[例题5] 试求解 (z2)5=16+163 i。
(3) 的性质:设 则
(a)
(b)
(c) 的根为 。
(d)
[例题6] 设=cos25+i sin25,则求下列各小题:
(1)5=? (2)1++2+3+4=?
(3)(1)(12)(13)(14) (4) (2+)(2+2)(2+3)(2+4)
Ans:(1)1 (2)0 (3)5 (4)11
(D)极坐标:
(1)在引进复数的极式时,我们可知要描述复数平面上一P(a+bi),除了知道实
部a,虚部b之外,只要能指出P点离原点O多远,及P点是哪一个有向角
的终边上,亦可标示出P点。
(2)在平面上选定一点O,再过O作一数线L,以其正向为始边,绕定点O旋
转,使P点恰在其上。若其旋转量,为一有向角(逆时针为正、顺时针为
负), =r,我们就可以利用r,来描述P点的位置,符号:P[r,]。这种
表示法就是极坐标表示法,其中O点称为该极坐标系的极(或极点),数线L
称为极轴。并以[r,]为P点的极坐标。
例如:在极坐标上点P[2,56]
P点的直角坐标为(2cos56,2sin56)=(3 ,1)
例如:在直角坐标上Q(1,3)
设在极坐标上Q[r,]
rcos =1且rsin =3
r=2且 =23+2n,n为整数
Q点的极坐标可表为Q[2, 23+2n]
[例题7] 设在极坐标中A[1,6]、B[3,56],试求AB=? Ans:13
(E)复数在几何上的应用:
复数运算的几何意义:
(1)复数绝对值的几何意义:
复数z=a+bi的绝对值定义为复数z到原点O的距离
|z|=|a+bi|=a2+b2
复数平面上有两个点P(z1)、Q(z2),其中z1=a+bi、z2=c+di
PQ=|z1z2|
(2)复数加法的几何意义:
在复数平面上给定A1(z1)、A2(z2),其中z1=a1+b1i,z2=a2+b2i,
以OA1、OA2为邻边作平行四边形OA1PA2,
则P点的复数坐标为z1+z2,OP=|z1+z2|。
(3)复数乘法与除法的几何意义:
设z1=r1(cos1+i sin1),z2=r2(cos2+i sin2),其中ri=|zi|,i=1,2
根据复数乘法的原则z1z2= r1 r2(cos(1+2)+i sin(1+2))
我们令P(z1)、Q(z2)、R(z1z2)
(a)旋转运动:当r2=1时
因为OR=| z1z2|=r1r2=r1,且方向角为1+2,故R点是由P点绕原点O逆时针
旋转2得到的。
(b)伸缩运动:当2=0时,
OR=| z1z2|=r1r2,且方向角为1+2=1,因此R点是由P点以原点O为伸缩中
心,伸缩|z2|倍得到的点。
(3)旋转与伸缩:
设z1=r1(cos1+i sin1),z2=r2(cos2+i sin2),其中ri=|zi|,i=1,2
根据复数乘法的原则z1z2= r1 r2(cos(1+2)+i sin(1+2))
令P(z1)、Q(z2)、R(z1z2),则R点是由P点绕原点旋转2角度
且以原点为中心伸缩r2倍所得到的点。
[例题8] 右图是一正方形OABC,已知A(2+i),试求B、C点的复数坐标。
Ans:B(1+3i)、C(1+2i)
[例题9] 复数平面上,设原点O为正三角形ABC的重心,已知A(1+i),求复数B、C。 Ans:132 + 312 i,312 3+12 i
[例题10] 利用棣美弗定理证明:sin3=3sin 4sin3 ,cos3=4cos33cos 。
复习评量
(A)学科能力测验、联考试题试题观摩:
1. 若复数z与 之积为 ,则z的主幅角为。(86日大自)Ans:23
2. 设z1=2+ai,z2=2b+(2b)i,其中a,b为实数,i=1 ,若|z1|=2|z2|,且z1z2的辐角为4,则数对(a,b)=? (85 自) Ans:(103 , 43 )
3. 令z为复数且 z6=1, z1 ,则下列选项何者为真?
(A) |z|=1(B) z2=1 (C) z3=1或z3=-1(D) |z4|=1 (E) 1+z+z2+z3+z4+z5=0
Ans:(A) (C) (D) (E) (90学科)
4. 令z=2(cos7+isin7),且zi=2(cosa+isina),试求a=? Ans:914 (91学科)
(B)重要问题复习:
5. 设复数z= ,求|z|=? Ans:13065
6. 试求下列各复数的极式:
(1)z=3+3i (2)z=4 (3)z= 2i
Ans:(1)z=32(cos34+isin34) (2)z=4(cos0+isin0) (3)z=2(cos2+isin2)
7. 试求下列各复数的极式:
(1)z=sin20+i cos20 (2)z=cos135isin45 (3)z= 3(cos25+i sin25)
Ans:(1)z=cos70+i sin70 (2)z=cos225+i sin225(3)z=3(cos205+i sin205)
8. 利用数学归纳法证明棣美弗定理。
9. (1)(cos100+i sin100)(cos10i sin10) (2)[2(1+i)][3+i]
(3)(1+3 i)10 (4)(3+i2)30 (5)
(6)
Ans:(1)i (2)4(cos512+i sin512) (3)512+5123 i (4)215 (5)261
(6)
10. 解方程式:(1)(z+2)3+8=0 (2)z44z3+6z24z+17=0并求以各根为顶点的正多边形的面积。
Ans:(1)4,22,222,面积33
(2)z=1+2[cos(2k+1)4+i sin(2k+1)4],k=0,1,2,3 面积=8
11. (1)求512i的二个平方根。
(2)再求复系数方程式z22(1+i)z5+14i=0 Ans:(1)3+2i,32i (2)2+3i,4i
12. 求下列各点的直角坐标:
(1)A[4,43] (2)B[2,712] (3)C[0,5] (4) D[5,1] (5)E[3,cos135]
Ans:(1)(2,23 ) (2)(262,6+22)
(3)(0,0) (4)(5cos1,5sin1) (5)(95,125)
13. 求下列各点的极坐标:
(1)A(2,2) (2)B(1+3 ,13 ) (3)C(4cos7,4sin7)(4)D(0,3)
Ans:(1)[22 ,34] (2)[22 ,12] (3)[4, 7] (4)[3,32]
14. 如图,给定z点的位置,且|z|=2,试描绘出1z的位置。
15. 如图,设OAB为一正三角形,其中A的坐标为(1,4)
试求B的坐标。Ans:(1223 ,2+32)
(c)进阶问题:
16. 设z1=cos78+isin78,z2=cos18+isin18
(1)求复数z1z2的主辐角。
(2)若(z1z2)5=a+bi,a,b为实数,求(a,b)=?
Ans:(1)138 (2)(32,12)
17. 设=cos27+i sin27
试求(1)1++2+3+4+5+6=?
(2)(1)(12)(13)(14)(15)(16)=?
Ans:(1)0 (2)7
18. 设zn=(1+i)(1+i2)(1+i3)(1+in),n为自然数,则
(1)|zn|=? (2)|zn+1zn|=? Ans:(1)n+1 (2)1
19. 设 =2n,n为大于1的自然数,试证: , 。
20. 在极坐标平面上二点,A(52 ,4)、B(2,cos135),则AB=?Ans:58
21. (1)设n为自然数,若z+1z =2cos,则证明:zn+1zn =2cosn。
(2)若z为复数,且满足 ,则 =?
22. 设z1,z2为复数,|z1|=2,|z2|=1,求|z1+z2|2+|z1z2|2=?Ans:10
(提示:若w为复数,则|w|2=w )
23. 已知z1=1+i,z2=i,试求z3使得z1z2z3为正三角形。
Ans:123 +32i或12+3 32i
24. A,B,C,D表x4x2+1=0的四个根,P点代表i,试求PA、PB、PC、PD之积。
Ans:3
Ⅶ 复数的运算公式
1、加法法则
复数的加法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,则它们的和是 (a+bi)+(c+di)=(a+c)+(b+d)i。两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。
2、减法法则
复数的减法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,则它们的差是 (a+bi)-(c+di)=(a-c)+(b-d)i。两个复数的差依然是复数,它的实部是原来两个复数实部的差,它的虚部是原来两个虚部的差。
错误公式特征:
1,自称是科学的,但含糊不清,缺乏具体的度量衡。
2,无法使用操作定义(例如,外人也可以检验的通用变量、属于、或对象)。
3,无法满足简约原则,即当众多变量出现时,无法从最简约的方式求得答案。
4,使用暧昧语言的语言,大量使用技术术语来使得文章看起来像是科学的。
5,缺乏边界条件:严谨的科学理论在限定范围上定义清晰,明确指出预测现象在何时何地适用,何时何地不适用。
以上内容参考:网络--计算公式
Ⅷ 复数乘法计算公式
复数乘法计算公式是:设z1=a+bi,z2=c+di(a、b、c、d∈R)是任意两个复数,那么它们的积(a+bi)(c+di)=(ac-bd)+(bc+ad)i。其实就是把两个复数相乘,类似两个多项式相乘,展开得:ac+adi+bci+bdi2,因为i2=-1,所以结果是(ac-bd)+(bc+ad)i。两个复数的积仍然是一个复数。
复数运算律介绍:
1、加法交换律:z1+z2=z2+z1
2、乘法交换律:z1×z2=z2×z1
3、加法结合律:(z1+z2)+z3=z1+(z2+z3)
4、乘法结合律:(z1×z2)×z3=z1×(z2+z3)
5、分配律:z1×(z2+z3)=z1×z2+z1×z3
复数的实际意义:
1、系统分析
在系统分析中,系统常常通过拉普拉斯变换从时域变换到频域。因此可在复平面上分析系统的极点和零点。分析系统稳定性的根轨迹法、奈奎斯特图法(Nyquist plot)和尼科尔斯图法(Nichols plot)都是在复平面上进行的。
2、信号分析
信号分析和其他领域使用复数可以方便的表示周期信号。模值|z|表示信号的幅度,辐角arg(z)表示给定频率的正弦波的相位。
3、反常积分
在应用层面,复分析常用以计算某些实值的反常函数,借由复值函数得出。方法有多种,见围道积分方法。
Ⅸ 复数的运算公式是什么
1、加法法则
复数的加法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,
则它们的和是 (a+bi)+(c+di)=(a+c)+(b+d)i。
两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。
2、减法法则
复数的减法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,
则它们的差是 (a+bi)-(c+di)=(a-c)+(b-d)i。
两个复数的差依然是复数,它的实部是原来两个复数实部的差,它的虚部是原来两个虚部的差。
3、乘法法则
规定复数的乘法按照以下的法则进行:
设z1=a+bi,z2=c+di(a、b、c、d∈R)是任意两个复数,那么它们的积(a+bi)(c+di)=(ac-bd)+(bc+ad)i。
其实就是把两个复数相乘,类似两个多项式相乘,展开得: ac+adi+bci+bdi2,因为i2=-1,所以结果是(ac-bd)+(bc+ad)i 。两个复数的积仍然是一个复数。
4、除法法则
复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R)叫复数a+bi除以复数c+di的商。
运算方法:可以把除法换算成乘法做,在分子分母同时乘上分母的共轭.。所谓共轭你可以理解为加减号的变换,互为共轭的两个复数相乘是个实常数。
(9)cc复数计算方法扩展阅读
复数的加法就是自变量对应的平面整体平移,复数的乘法就是平面整体旋转和伸缩,旋转量和放大缩小量恰好是这个复数对应向量的夹角和长度。
二维平移和缩放是一维左右平移伸缩的扩展,旋转是一个至少要二维才能明显的特征,限制在一维上,只剩下旋转0度或者旋转180度,对应于一维导数正负值(小线段是否反向)。
Ⅹ 复数的计算是怎么样的
复数运算法则有:加减法、乘除法。两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。复数的加法满足交换律和结合律。此外,复数作为幂和对数的底数、指数、真数时,其运算规则可由欧拉公式e^iθ=cos θ+i sin θ(弧度制)推导而得。
加法:实部与实部相加为实部,虚部与虚部相加为虚部。
(a+bi)+(c+di)=(a+c)+(b+d)i
减法:实部与实部相减为实部,虚部与虚部相减为虚i。
(a+bi)-(c+di)=(a-c)+(b-d)i
乘法:按多项式的乘法运算来做
(a+bi)*(c+di)=ac+adi+bci+bdi^2(i^2=-1)
=(ac-bd)+(ad+bc)i
除法:把除法写成分数的形式,再将分母实数化(就是乘其共轭复数)
(a+bi)/(c+di)=(a+bi)*(c-di)/[(c+di)(c-di)]
=[ac+bd-(ad-bc)i]/(c^2+d^2)
在实数域上定义二元有序对z=(a,b)
并规定有序对之间有运算“+”、“×”(记z1=(a, b),z2=(c, d)):
z1+ z2=(a+c, b+d)
z1× z2=(ac-bd, bc+ad)
容易验证,这样定义的有序对全体在有序对的加法和乘法下成一个域,并且对任何复数z,有
z=(a, b)=(a, 0) + (0, 1) × (b, 0)
令f是从实数域到复数域的映射,f(a)=(a, 0),则这个映射保持了实数域上的加法和乘法,因此实数域可以嵌入复数域中,可以视为复数域的子域。
以上内容参考:网络-复数