㈠ 如何计算拟合优度
拟合以后点右键,趋势线选项,显示R的平方值。
拟合优度(Goodness of Fit)是指回归直线对观测值的拟合程度。度量拟合优度的统计量是可决系数(亦称确定系数)R^2。R^2的取值范围是[0,1]。R^2的值越接近1,说明回归直线对观测值的拟合程度越好;反之,R^2的值越接近0,说明回归直线对观测值的拟合程度越差。
㈡ 回归分析法计算公式是什么
相关计算公式为:a=[∑Xi2∑Yi-∑Xi∑XiYi]/[n∑Xi2-(∑Xi)2],b=[n∑XiYi-∑Xi∑Yi]/[n∑Xi2-(∑Xi)2]。
回归直线法是根据若干期业务量和资金占用的历史资料,运用最小平方法原理计算不变资金和单位产销量所需变动资金的一种资金习性分析方法。
回归分析法主要解决的问题:
1、确定变量之间是否存在相关关系,若存在,则找出数学表达式。
2、根据一个或几个变量的值,预测或控制另一个或几个变量的值,且要估计这种控制或预测可以达到何种精确度。
㈢ 拟合优度R2的计算公式
拟合优度R2的计算公式:R2=1-"回归平方和在总平方和中所占的比率;
R2的值越接近1,说明回归直线对观测值的拟合程度越好;反之,R²的值越小,说明回归直线对观测值的拟合程度越差。指回归直线对观测值的拟合程度。度量拟合优度的统计量是可决系数(亦称确定系数)R²。R²最大值为1。
(3)回归分析拟合优度检验的计算方法扩展阅读:
R2衡量回归方程整体的拟合度,是表达因变量与所有自变量之间的总体关系。R²等于回归平方和在总平方和中所占的比率,即回归方程所能解释的因变量变异性的百分比(在MATLAB中,R²=1-"回归平方和在总平方和中所占的比率")。
实际值与平均值的总误差中,回归误差与剩余误差是此消彼长的关系。因而回归误差从正面测定线性模型的拟合优度,剩余误差则从反面来判定线性模型的拟合优度。
统计上定义剩余误差除以自由度n–2所得之商的平方根为估计标准误。为回归模型拟合优度的判断和评价指标,估计标准误显然不如判定系数R²。R²是无量纲系数,有确定的取值范围(0—1),便于对不同资料回归模型拟合优度进行比较;
而估计标准误差是有计量单位的,又没有确定的取值范围,不便于对不同资料回归模型拟合优度进行比较。
㈣ 如何采用SPSS对线性回归模型作出拟合优度检验
你提的方程显着性检验(F检验),变量显着性检验(t检验) 直接通过线性回归模型就能给出来了,也就是对构建的回归模型是否有效的一个检验。而同时还能输出一个调整的R²,也算是对回归模型拟合度的一个检验
但是如果要专业的检验回归模型的拟合优度,那就在进行回归分析的时候 选择保存回归的预测值,然后比较预测值和实际值之间的差异,通过这个差异来看构建的模型的拟合度
㈤ 一元线性回归方程拟合优度怎么求
概念:一元线性回归方程反应一个因变量与一个自变量之间的线性关系,当直线方程Y'=a+bx的a和b确定时,即为一元回归线性方程。
经过相关分析后,在直角坐标系中将大量数据绘制成散点图,这些点不在一条直线上,但可以从中找到一条合适的直线,使各散点到这条直线的纵向距离之和最小,这条直线就是回归直线,这条直线的方程叫作直线回归方程。
构建一元线性回归方程的步骤:
1.
根据提供的n对数据在直角坐标系中作散点图,从直观上看有误成直线分布的趋势。即两变量具有直线关系时,才能建立一元线性回归方程。
2.
依据两个变量之间的数据关系构建直线回归方程:Y'=a+bx。
(其中:b=Lxy/Lxx
a=y
-
bx)
三、一元线性回归方程的计算
步骤:
1.
列计算表,求∑x,∑xx,∑y,∑yy,∑xy。
2.计算Lxx,Lyy,Lxy
Lxx=∑(x-xˇ)(x-xˇ)
Lyy=∑(y-yˇ)(y-yˇ)
Lxy=∑(x-xˇ)(y-yˇ)
3.求相关系数,并检验;
r
=
Lxy
/(
Lxx
Lyy)1/2
2.
求回归系数b和常数a;
b=Lxy
/Lxx
a=y
-
bx
3.
列回归方程。
㈥ 一元回归分析法的预测过程是什么
一元线性回归预测法的概念一元线性回归预测法是分析一个因变量与一个自变量之间的线性关系的预测方法。
常用统计指标:平均数、增减量、平均增减量。
一元线性回归预测基本思想确定直线的方法是最小二乘法
最小二乘法的基本思想:最有代表性的直线应该是直线到各点的距离最近。然后用这条直线进行预测。
一元线性回归预测模型的建立1、选取一元线性回归模型的变量
;
2、绘制计算表和拟合散点图
;
3、计算变量间的回归系数及其相关的显着性
;
4、回归分析结果的应用
。
模型的检验1、经济意义检验:就是根据模型中各个参数的经济含义,分析各参数的值是否与分析对象的经济含义相符。
2、回归标准差检验
3、拟合优度检验
4、回归系数的显着性检验
利用回归预测模型进行预测可以分为:点预测和置信区间预测法
1、点预测法:将自变量取值带入回归预测模型求出因变量的预测值。
2、置信区间预测法:估计一个范围,并确定该范围出现的概率。置信区间的大小的影响的因素:a、因变量估计值;b、回归标准差;C、概率度t。
㈦ 如何采用SPSS对线性回归模型作出拟合优度检验
利用“模型概述表”中的“修正的R方”来检验,该值越接近1越好。
㈧ 一元线性回归预测法的模型检验
1、经济意义检验:就是根据模型中各个参数的经济含义,分析各参数的值是否与分析对象的经济含义相符。
2、回归标准差检验
3、拟合优度检验
4、回归系数的显着性检验 可以分为:点预测和置信区间预测法
1、点预测法:将自变量取值带入回归预测模型求出因变量的预测值。
2、置信区间预测法:估计一个范围,并确定该范围出现的概率。置信区间的大小的影响的因素:a、因变量估计值;b、回归标准差;C、概率度t。 一元线性回归分析预测法,是根据自变量x和因变量Y的相关关系,建立x与Y的线性回归方程进行预测的方法。由于市场现象一般是受多种因素的影响,而并不是仅仅受一个因素的影响。所以应用一元线性回归分析预测法,必须对影响市场现象的多种因素做全面分析。只有当诸多的影响因素中,确实存在一个对因变量影响作用明显高于其他因素的变量,才能将它作为自变量,应用一元相关回归分析市场预测法进行预测。
一元线性回归分析法的预测模型为:
式中,xt代表t期自变量的值;
代表t期因变量的值;
a、b代表一元线性回归方程的参数。
a、b参数由下列公式求得(用代表):
为简便计算,我们作以下定义:
(2)
式中:
这样定义a、b后,参数由下列公式求得:
将a、b代入一元线性回归方程Yt = a + bxt,就可以建立预测模型,那么,只要给定xt值,即可求出预测值。
在回归分析预测法中,需要对X、Y之间相关程度作出判断,这就要计算相关系数Y,其公式如下:
相关系数r的特征有:
①相关系数取值范围为:-1≤r≤1 。
②r与b符合相同。当r>0,称正线性相关,Xi上升,Yi呈线性增加。当r<0,称负线性相关,Xi上升,Yi呈线性减少。
③|r|=0,X与Y无线性相关关系;|r|=1,完全确定的线性相关关系;0<|r|<1,X与Y存在一定的线性相关关系;|r|>0.7,为高度线性相关;0.3<|r|≤0.7,为中度线性相关;|r|≤0.3,为低度线性相关。
㈨ 如何分析回归模型的拟合度和显着性
模型的拟合度是用R和R方来表示的,一般大于0.4就可以了;自变量的显着性是根据各个自变量系数后面的Sig值判断的,如果小于0.05可以说在95%的显着性水平下显着,小于0.01就可以说在99%的显着性水平下显着了。如果没有给出系数表,是看不到显着性如何的。
回归分析(regression analysis)是研究一个变量(被解释变量)关于另一个(些)变量(解释变量)的具体依赖关系的计算方法和理论。 从一组样本数据出发,确定变量之间的数学关系式对这些关系式的可信程度进行各种统计检验,并从影响某一特定变量的诸多变量中找出哪些变量的影响显着,哪些不显着。利用所求的关系式,根据一个或几个变量的取值来预测或控制另一个特定变量的取值,并给出这种预测或控制的精确程度。
其用意:在于通过后者的已知或设定值,去估计和(或)预测前者的(总体)均值。
拓展资料:
回归模型(regression model)对统计关系进行定量描述的一种数学模型。如多元线性回归的数学模型可以表示为y=β0+β1*x+εi,式中,β0,β1,…,βp是p+1个待估计的参数,εi是相互独立且服从同一正态分布N(0,σ2)的随机变量,y是随机变量;x可以是随机变量,也可以是非随机变量,βi称为回归系数,表征自变量对因变量影响的程度。
(资料来源:网络:回归模型)