① 小学数学应用题的解题步骤和方法
小学数学10道经典应用题解题思路及答题
网络网盘链接:https://pan..com/s/1vUkp3x_qJYZqH5Y0E394hQ
提取码:ae3g
若资源有问题欢迎追问~
② 数学的应用题有几种方法
分析法:分析法是从题中所求问题出发,逐步找出要解决的问题所必须的已知条件的思考方法。
02、 综合法:综合法就是从题目中已知条件出发,逐步推算出要解决的问题的思考方法。
03、 分析、综合法:一方面要认真考虑已知条件,另一方面还要注意题目中要解决的问题是什么,这样思维才有明确的方向性和目的性。
04、 分解法:把一道复杂的应用题拆成几道基本的应用题,从中找到解题的线索。
05、 图解法:图解法是用画图或线段把题目听条件和问题明确地表示出来,然后“按图索骥”寻找解答应用题的方法。
06、 假设法:假设法就是解题时,对题目中的某些现象或关系做出适当的假设,然后,用事实与假设之间的矛盾中找到正确的解题方法。
例:冰箱厂生产一批冰箱,原计划每天生产800台,而实际每天比计划多生产了120台,结果比原计划提前3天完成了任务。实际用了多少天?解法一:(800+120)×3÷120—3=20(天)(这是一种常规的解法);解法二:假设原计划少生产3天,则共少生产了800×3=2400台冰箱。这时计划生产的天数就等于实际生产的天数,造成少生产2400台的原因是每天计划比实际少生产120台,所以实际生产天数为:2400÷120=20(天)即列式为:800×3÷120=20(天)。
07、 转化法:转化方法就是把某一个数学问题,通过数学变换,转化成另一个数学问题来处理,然后把它解答出来的方法。
例:一辆货车从甲城开往乙城需10小时,一辆客车从乙城开往甲城需6小时,两车同时出发,相向而行,已知甲、乙两城相距600千米,几小时后两车相遇?解法一:600÷(600÷10+600÷6)解法二:把两地路程看作单位“1”,货车的时速是1/10,客车的时速是1/6,依然是用路程除以速度和,得到相遇时间:1÷(1/10+1/6)
08、 倒推法(还原法):从条件的终结状态出发,运用加与减、乘与除之间的互逆关系,从后向前一步一步地推算,从而解决问题的方法,称为倒推法或还原法。
例:某仓库货物若干袋,第一次运出了1/3少4袋,第二次运出余下的一半少2袋,库中还剩106袋,仓库原有货物多少袋?【(106—2)×2—4】÷(1—1/3)=306(袋)
09、 找对应关系的方法:在某些数学题中,存在着一些相关的对应量,通过分析条件之间的某些数量的对应关系,实现未知向已知的转化,这种思考方法,可称为“对应法”。
例:一本书,第一天读了32页,第二天读了40页,剩下的页数占全书页数的1/4。这本书还剩下多少页没有读?(找出各相关对应量)
10、 替换法:“替换”就是等量代换。用一种量(或一种量的一部分)来代替和它相等的另一种量(或另一种量的一部分),从而减少问题中的数量个数,降低解题的难度,然后设法将这个被代换的量求出。
例:食堂三天用完一桶油,第一天用了6千克,第二天用了余下的3/7,第三天用的恰好是这桶油的一半。第二天和第三天共用油多少千克?(分析:6千克对应余下1/7即1-3/7-3/7,找到这个对应关系,余下的量正好是题目所求的第二天和第三天共用的油量:6÷(1—3/7-3/7)=42(千克)
11、 从变量中找不变量的解题方法:
(1) 变中有不变——和不变:例:甲、乙两个施工队共180人,从甲队抽出自己人数的2/11调到乙队后,两队人数则相等,求两队原来各有多少人?甲队:180÷2÷(1—2/11)=110(人)
(2) 变中有不变——差不变:例:甲储蓄2000元,乙储蓄400元。如果从现在开始,每人每月各存200元,几个月后甲储蓄的钱数是乙储蓄的钱数的3倍?(分析:甲比乙多储蓄1600元,而这1600则刚好是乙几个月后钱数的2倍,则列式为:【(2000—400)÷(3—1)—400】÷200=2(个))
(3) 变中有不变——某一部分量不变:例:要从含盐16%的盐水25千克中蒸发去一部分水,得到含盐40%的盐水,应当蒸发去多少千克水?(析:这道题的总量是盐水的重量,它是由盐和水两个部分量组成。盐水蒸发后,水的重量减少了,盐水的总重量也随它减少,浓度也随着发生了变化。但要看到变中有不变,盐的重量始终没变,抓住盐这个不变量入手分析,便可得出答案:25—25×16%÷40%=15(千克))
(4) 变中有不变——形变体不变:例:把一个长、宽、高分别为9厘米、7厘米、3厘米的长方体铁块和一个棱长5厘米的正方体铁块,熔铸成一个圆柱体,这个圆柱体底面直径为20厘米,高是多少厘米?(分析:形态虽然发生了变化,但是总体积却没有变化:(9×7×3+5×5×5)÷【3.14×(10×10)】=1厘米)五年级上册的组合图形也可以用这种方法来分析。
12、 构造法:在计算某些图形题时,把原来不易处理的,不规则的图形,通过平移、旋转、翻折后,重新构造成一个新的更便天处理的图形为解决问题,这个思考方法,称为构造法。
13、 列举法:数量关系比较复杂,很难列出算式或方程求解。我们就要根据题目的要求,把可能的答案一一列举出来,再进一步根据题目中的条件逐步排除非解或缩小范围,进行筛选出题目的答案。
例:有一个伍分币,4个个贰分币,8个壹分币,要拿8分钱,有几种拿法?
14、 消去法:在一道数学题中,含有两个未知数,在解题时,通过简单的运算,先消去一个未知数,再求另一个未知数。这种解题的思考方法称为消去法。
例:百货商店里,2支圆珠笔和3支钢笔共值6元6角,3支圆珠笔和3支钢笔共值7元2角。一支圆珠笔多少钱?
15、 设数法:有的题目含有某个不定的量,按照一般的解题思路,不易找出解题方法,如果我们把题目中某个不定量设定为具体的数,就可以使原题化抽象为具体,使难题变容易,这种解题的思考方法称为设数法。
例:小华参加爬山活动,从山脚爬到山顶后,按原路下山,上山时每分钟走20米,下山时每分钟走30米,求小华上、下山的平均速度。(分析:根据“总路程÷时间=平均速度”题中没有给出路程,可以设为600米。则列式为:600×2÷(600÷20+600÷30)=24(米/分)
③ 关于小学数学应用题全部的计算公式 及方法
首先是一些面积的基本计算公式,如:圆的计算公式(面积、周长)长方形的计算公式(面积、周长)正方形、长方体、正方体、圆柱体等其他图形的计算公式。
其次,就是列方程,每次遇到不会的应用题都推荐用方程的形式来解决,这是最为简单的回答方法。其中,列方程的方法也分为好几种:1、顺着题目的意思走
2、根据题目的意思来列出等量关系(建议设单倍数为X,比较方便)
3、根据图形的计算公式来列方程
4、在一句话中,把“比”字看作一个“=”,把“是”字也看作一个“=”。
5、(关于行程问题中的相遇问题)总量=慢者先行路程+快者路程+慢者路程
6、(关于工作问题)工作效率*工作时间=工作总量
7、(关于行程问题中的相遇问题)一半路程=另一半路程
8、寻找一个不变量:总量=总量
9、(关于变化问题)三步曲:1、看始时两个物体的量
2、变化的过程
3、结果
接下来,就是一些简单的分数应用题了,建议牢记分数的四则运算,和结尾能化简就化简的原则,下面是一些简短的例子,便于理解:
加法:2/3+6/3
=6/9+6/3
=6/12
=1/2
减法:6/6-6/3
=6/(6-3)
=6/3
=2/1
乘法:6/5*6/6
=6*6/6*5
=36/30
=6/5
除法:(等于乘另一个数的倒数)6/6/5/6
=6*6/6*5
=36/30
=6/5
帮我加点¥吧,这年头出来混不容易呀!囧囧囧谢谢!!
④ 用两种方法解答应用题
1.(方法一)设徒弟每小时做X个零件,师傅每小时做2X-30个
8(3X-30)=960
徒弟每小时50个师傅每小时70个
(方法二)设师傅每小时做X个零件,徒弟每小时做(X+30)/2个
8X+4(X+30)=960
徒弟每小时做50个师傅每小时做70个
2.(法一)设小东X岁小明(2X)/3岁
X-(2X)/3=6
小明12岁,小东18岁
(法二)设小明X岁小东(3X)/2岁
X+6=(3X)/2
小明12岁,小东18岁
3.(法一)设有X个人
9X-16=7X
X=8人
共有饼干7*8=56块
法二)设有X块饼干
(X+16)/9=X/7
X=56块 共有人8个
记得加分!
⑤ 一道数学应用题(用2种方法计算)
方法一:480*(3/10)/4=36480/36-4=9.3(小时)方法二:设这辆车到达上海还约需x小时3/4=7/xx=9.3这辆车到达上海还约需9.3小时。
⑥ 求小学数学应用题计算公式 急
一、鸡兔同笼问题:
基本题型:笼子里有鸡兔共30只,一共100条腿,问:鸡兔各几只?
解这个题的方法是:先假设30只都是鸡,那么共有2x30=60条腿,少100-60=40条腿,因为每只兔子比鸡多4-2=2条腿,所以兔子共有40/2=20只,则鸡共有30-20=10只。
当然也可以倒过来,先假设30只都是兔子,那么就120条腿,多了20条,因为鸡比兔子少2条腿,所以鸡是10只。
类似的题还有很多,但都是从基本题型变化出来的,如下题:
俱乐部里有30副棋,正好供100位小朋友下,象棋是每2人下一副,跳棋是每6人下一副,问象棋和跳棋各有几副?
二、工程问题:
基本题型:
甲乙两人完成某项工程,甲单独做需要3天完成,乙单独做需要6天完成,问甲乙共同完成需要几天?
解题方法:
甲每天的工作量是全部工程的1/3,乙每天的工作量是全部工程的1/6,两人合作每天的工作量=1/3+1/6=1/2,所以甲乙共同完成需要2天。
这个题会有很多变化,如甲先工作多少天,乙再开始工作;或者甲乙共同工作一天,乙单独工作等等,但解题思路是一样的。都是把总的工作量定成1,然后计算。
三、相遇问题:
基本题型:甲乙两地相距20公里,甲的速度是6公里/小时,乙的速度是4公里/小时,甲乙两人同时同向出发,问多少时间后相遇?
解题方法:这个比较简单,20/(6+4)=2
这类的题变化是非常多的,通常有甲先出发若干时间后,乙再发的;或者求相遇地点离甲地多远的?
四、追击问题:
基本题型:甲的速度是10公里/小时,乙的速度是15公里/小时,甲先出发2小时,问乙多少时间追上甲?
解题方法:甲出发2小时,走的路程是10x2=20公里,乙的速度比甲快15-10=5公里/小时,所以追上的时间是20/5=4小时。
这个题的变化很多,比如着名的放水问题。某浴池开注水管,10分钟可注满,开排水管,20分钟可排完,问两管同时开,多少分钟可注满。这个题可以按追击问题思路来做:注水的速度是1/10,排水的速度是1/20,两者相差1/10,所以10分钟可注满。
五、水流问题:
基本题型:甲乙两地相距300公里,船速为20公里/小时,水流速度为5公里/小时,问来回需要多少时间?
解题方法:假设去的时候顺流,则速度为20+5=25公里/小时,所用时间为300/25=12小时,回来的时候逆流,则速度为20-5=15公里/小时,所用时间为300/15=20小时
基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间
关键问题:确定行程过程中的位置
相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)
追击问题:追击时间=路程差÷速度差(写出其他公式)
流水问题:顺水行程=(船速+水速)×顺水时间 逆水行程=(船速-水速)×逆水时间
顺水速度=船速+水速 逆水速度=船速-水速
静水速度=(顺水速度+逆水速度)÷2 水 速=(顺水速度-逆水速度)÷2
流水问题:关键是确定物体所运动的速度,参照以上公式。
过桥问题:关键是确定物体所运动的路程,参照以上公式。
仅供参考:
【和差问题公式】
(和+差)÷2=较大数;
(和-差)÷2=较小数。
【和倍问题公式】
和÷(倍数+1)=一倍数;
一倍数×倍数=另一数,
或 和-一倍数=另一数。
【差倍问题公式】
差÷(倍数-1)=较小数;
较小数×倍数=较大数,
或 较小数+差=较大数。
【平均数问题公式】
总数量÷总份数=平均数。
【一般行程问题公式】
平均速度×时间=路程;
路程÷时间=平均速度;
路程÷平均速度=时间。
【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。这两种题,都可用下面的公式解答:
(速度和)×相遇(离)时间=相遇(离)路程;
相遇(离)路程÷(速度和)=相遇(离)时间;
相遇(离)路程÷相遇(离)时间=速度和。
【同向行程问题公式】
追及(拉开)路程÷(速度差)=追及(拉开)时间;
追及(拉开)路程÷追及(拉开)时间=速度差;
(速度差)×追及(拉开)时间=追及(拉开)路程。
【列车过桥问题公式】
(桥长+列车长)÷速度=过桥时间;
(桥长+列车长)÷过桥时间=速度;
速度×过桥时间=桥、车长度之和。
【行船问题公式】
(1)一般公式:
静水速度(船速)+水流速度(水速)=顺水速度;
船速-水速=逆水速度;
(顺水速度+逆水速度)÷2=船速;
(顺水速度-逆水速度)÷2=水速。
(2)两船相向航行的公式:
甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度
(3)两船同向航行的公式:
后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。
【工程问题公式】
(1)一般公式:
工效×工时=工作总量;
工作总量÷工时=工效;
工作总量÷工效=工时。
(2)用假设工作总量为“1”的方法解工程问题的公式:
1÷工作时间=单位时间内完成工作总量的几分之几;
1÷单位时间能完成的几分之几=工作时间。
(注意:用假设法解工程题,可任意假定工作总量为2、3、4、5……。特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便。)
【盈亏问题公式】
(1)一次有余(盈),一次不够(亏),可用公式:
(盈+亏)÷(两次每人分配数的差)=人数。
例如,“小朋友分桃子,每人10个少9个,每人8个多7个。问:有多少个小朋友和多少个桃子?”
解(7+9)÷(10-8)=16÷2
=8(个)………………人数
10×8-9=80-9=71(个)………………………桃子
或8×8+7=64+7=71(个)(答略)
(2)两次都有余(盈),可用公式:
(大盈-小盈)÷(两次每人分配数的差)=人数。
例如,“士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。问:有士兵多少人?有子弹多少发?”
解(680-200)÷(50-45)=480÷5
=96(人)
45×96+680=5000(发)
或50×96+200=5000(发)(答略)
(3)两次都不够(亏),可用公式:
(大亏-小亏)÷(两次每人分配数的差)=人数。
例如,“将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。有多少学生和多少本本子?”
解(90-8)÷(10-8)=82÷2
=41(人)
10×41-90=320(本)(答略)
(4)一次不够(亏),另一次刚好分完,可用公式:
亏÷(两次每人分配数的差)=人数。
(例略)
(5)一次有余(盈),另一次刚好分完,可用公式:
盈÷(两次每人分配数的差)=人数。
(例略)
【鸡兔问题公式】
(1)已知总头数和总脚数,求鸡、兔各多少:
(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;
总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;
总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”
解一 (100-2×36)÷(4-2)=14(只)………兔;
36-14=22(只)……………………………鸡。
解二 (4×36-100)÷(4-2)=22(只)………鸡;
36-22=14(只)…………………………兔。
(答 略)
(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式
(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数
或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;
总头数-鸡数=兔数。(例略)
(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;
总头数-鸡数=兔数。(例略)
(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:
(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”
解一 (4×1000-3525)÷(4+15)
=475÷19=25(个)
解二 1000-(15×1000+3525)÷(4+15)
=1000-18525÷19
=1000-975=25(个)(答略)
(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元……。它的解法显然可套用上述公式。)
(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:
〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;
〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。
例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只?”
解 〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2
=20÷2=10(只)……………………………鸡
〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2
=12÷2=6(只)…………………………兔(答略)
【植树问题公式】
(1)不封闭线路的植树问题:
间隔数+1=棵数;(两端植树)
路长÷间隔长+1=棵数。
或 间隔数-1=棵数;(两端不植)
路长÷间隔长-1=棵数;
路长÷间隔数=每个间隔长;
每个间隔长×间隔数=路长。
(2)封闭线路的植树问题:
路长÷间隔数=棵数;
路长÷间隔数=路长÷棵数
=每个间隔长;
每个间隔长×间隔数=每个间隔长×棵数=路长。
(3)平面植树问题:
占地总面积÷每棵占地面积=棵数
【求分率、百分率问题的公式】
比较数÷标准数=比较数的对应分(百分)率;
增长数÷标准数=增长率;
减少数÷标准数=减少率。
或者是
两数差÷较小数=多几(百)分之几(增);
两数差÷较大数=少几(百)分之几(减)。
【增减分(百分)率互求公式】
增长率÷(1+增长率)=减少率;
减少率÷(1-减少率)=增长率。
比甲丘面积少几分之几?”
解 这是根据增长率求减少率的应用题。按公式,可解答为
百分之几?”
解 这是由减少率求增长率的应用题,依据公式,可解答为
【求比较数应用题公式】
标准数×分(百分)率=与分率对应的比较数;
标准数×增长率=增长数;
标准数×减少率=减少数;
标准数×(两分率之和)=两个数之和;
标准数×(两分率之差)=两个数之差。
【求标准数应用题公式】
比较数÷与比较数对应的分(百分)率=标准数;
增长数÷增长率=标准数;
减少数÷减少率=标准数;
两数和÷两率和=标准数;
两数差÷两率差=标准数;
【方阵问题公式】
(1)实心方阵:(外层每边人数)2=总人数。
(2)空心方阵:
(最外层每边人数)2-(最外层每边人数-2×层数)2=中空方阵的人数。
或者是
(最外层每边人数-层数)×层数×4=中空方阵的人数。
总人数÷4÷层数+层数=外层每边人数。
例如,有一个3层的中空方阵,最外层有10人,问全阵有多少人?
解一 先看作实心方阵,则总人数有
10×10=100(人)
再算空心部分的方阵人数。从外往里,每进一层,每边人数少2,则进到第四层,每边人数是
10-2×3=4(人)
所以,空心部分方阵人数有
4×4=16(人)
故这个空心方阵的人数是
100-16=84(人)
解二 直接运用公式。根据空心方阵总人数公式得
(10-3)×3×4=84(人)
【利率问题公式】利率问题的类型较多,现就常见的单利、复利问题,介绍其计算公式如下。
(1)单利问题:
本金×利率×时期=利息;
本金×(1+利率×时期)=本利和;
本利和÷(1+利率×时期)=本金。
年利率÷12=月利率;
月利率×12=年利率。
(2)复利问题:
本金×(1+利率)存期期数=本利和。
例如,“某人存款2400元,存期3年,月利率为10.2‰(即月利1分零2毫),三年到期后,本利和共是多少元?”
解 (1)用月利率求。
3年=12月×3=36个月
2400×(1+10.2%×36)
=2400×1.3672
=3281.28(元)
(2)用年利率求。
先把月利率变成年利率:
10.2‰×12=12.24%
再求本利和:
2400×(1+12.24%×3)
=2400×1.3672
=3281.28(元)(答略)
⑦ 小学应用题列分式解答和列综合算式解答是不是两种方法计算有何评判标准
不是两种不同的方法。
分步式解答和综合式解答的区别只在于计算上的区别。难度稍有不一样,分步式可以先算出中间问题。综合式是用式子表示中间问题。
我们所说的两种不同的解法是指两种不同的思路。比如:算术方法、方程解、数形结合、化归等
⑧ 超市运进了12箱苹果和15箱梨每箱都是24个一共用了多少个水果用两种方法计算
这道应用题的计算方法是(12+15)×24=648(个),或12×24+15×24=648(个)。
答:一共运进了648个水果。
⑨ 关于小学数学应用题全部的计算公式 及方法
数量关系计算公式方面
1、每份数×份数=总数 /总数÷每份数=份数/ 总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6、 加数+加数=和 和-另一个加数=一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷另一个因数=一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1 、正方形 C周长 S面积 a边长
周长=边长×4 C=4a
边长=周长÷4 a=C÷4
面积=边长×边长 S=a×a=a2
2 、正方体 V:体积 a:棱长
表面积=棱长×棱长×6 S表=a×a×6
体积=棱长×棱长×棱长 V=a×a×a=a3
3 、长方形
C周长 S面积 a长 b宽
周长=(长+宽)×2 C=(a+b)×2
长=周长÷2-宽
宽=周长÷2-长
面积=长×宽
S=a×b
4 、长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积=长×宽×2+长×高×2+宽×高×2
S=2(ab+ah+bh)
(2)体积=长×宽×高 V=abh
长=体积÷(宽×高)
宽=体积÷(长×高)
高=体积÷(长×宽)
5 三角形
s面积 a底 h高
面积=底×高÷2 s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高 s=ah
底=面积÷高 高=面积÷底
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2 s=(a+b)× h÷2
高=面积×2÷(上底+下底)
上底=面积×2÷高-下底
下底=面积×2÷高-上底
8 圆形
S面积 C周长 ∏ d=直径 r=半径
直径=半径×2 d=2r 半径=直径÷2 r= d÷2
(1)周长=直径×π=2×π×半径
C= π d =2πr
直径=周长÷π d= C ÷ π
半径=周长÷(2π) r=C÷(2π)
(2)面积=π×半径×半径 s=πr2
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
①侧面积=π d×高(据直径求侧面积)
②侧面积=2πr×高(据半径求侧面积)
(2)表面积=侧面积+底面积×2
①π d×高+π( )2×2(据直径求表面积)
②2πr×高+π r2 ×2(据半径求表面积)
(3)体积=底面积×高 V=Sh
底面积=体积÷高 S=V÷H
高=体积÷底面积 H=V÷S
长方体(正方体、圆柱体)的体积=底面积×高 V=Sh
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3 V= S H
底面积=体积×3÷高
高=体积×3÷底面积
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
原售价=实际售价÷折扣
实际售价=原售价×折扣
应纳税额=总收入×税率
税率=应纳税额÷总收入
总收入=应纳税额÷税率
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
长度单位换算
1公里=1千米
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米 1厘米=10毫米
面积单位换算
1平方千米=100公顷 1公顷=10000平方米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米 1亩=666.666平方米
体(容)积单位换算
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方分米=1升 1立方厘米=1毫升
1立方米=1000升
重量单位换算
1吨=1000 千克 1千克=1000克
1千克=1公斤(1公斤 = 2市斤)
人民币单位换算
1元=10角 1角=10分 1元=100分
时间单位换算
1世纪=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分 1分=60秒 1时=3600秒
小学数学定义定理公式(二)
一、算术方面
1.加法交换律:a+b=b+a
两数相加交换加数的位置,和不变。
2.加法结合律:(a+b)+c=a+(b+c)
三个数相加,先把前两个数相加,或先把后两个数相加,再同第
三个数相加,和不变。
3.乘法交换律:a×b=b×a
两数相乘,交换因数的位置,积不变。
4.乘法结合律:(a×b)×c=a×(b×c)
三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5.乘法分配律:(a±b)×c=a×c±b×c
两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:
(4+2)×5=4×5+2×5,(4-2)×5=4×5-2×5
6、特殊情况:a ÷ b ÷ c = a ÷(b × c) 、 a-b-c= a-(b+c)
7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
8、有余数的除法: 被除数=商×除数+余数
方程、代数与等式
等式:等号左边的数值与等号右边的数值相等的式子叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
方程式:含有未知数的等式叫方程式。 如:3x =9
分数
分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
倒数的概念:1.如果两个数乘积是1,我们称一个是另一个的倒数。(或称这两个数互为倒数)1的倒数是1,0没有倒数。
分数除以整数(0除外),等于分数乘以这个整数的倒数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小
分数的除法则:除以一个数(0除外),等于乘这个数的倒数。
真分数:分子比分母小的分数叫做真分数。
假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
带分数:把假分数写成整数和真分数的形式,叫做带分数。
分数的基本性质:分数的分子和分母同时乘以或除以一个相同的数(0除外),分数的大小不变。
比 和比例
什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3 。
比的基本性质:比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
比例的基本性质:在比例里,两外项之积等于两内项之积。
解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:x×y = k( k一定)或k / x = y
=比例尺 图上距离=实际距离×比例尺
实际距离=图上距离÷比例尺
百分数
百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
要学会把小数化成分数和把分数化成小数的化发。
倍数与约数
最大公约数:几个数公有的约数,叫做这几个数的公约数。公因数是有限个。其中最大的一个叫做这几个数的最大公约数。
最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。公倍数是无限个。其中最小的一个叫做这几个数的最小公倍数。
互质数: 公约数只有1的两个数,叫做互质数。相临的两个数一定互质。两个连续奇数一定互质。1和任何数互质。
通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
约分:把一个分数的分子、分母同时除以公约数,分数值不变,这个过程叫约分。 (约分用最大公约数)
最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。
质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1既不是质数,也不是合数。
质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。
分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。
倍数特征:
2的倍数的特征:个位是0,2,4,6,8。
3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数。
5的倍数的特征:个位是0,5。
倍数关系的两个数,最大公约数为较小数,最小公倍数为较大数。
互质关系的两个数,最大公约数为1,最小公倍数为乘积。
两个数分别除以他们的最大公约数,所得商互质。
两个数的与最小公倍数的乘积等于这两个数的乘积。
两个数的公约数一定是这两个数最大公约数的约数。
1既不是质数也不是合数。
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距+1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数小数×倍数=大数
(或 小数+差=大数)
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量