导航:首页 > 计算方法 > 相关系数计算方法

相关系数计算方法

发布时间:2022-11-02 11:55:54

Ⅰ 相关系数计算公式是什么

相关系数公式为:若Y=a+bX,则有:令E(X) = μ,D(X) = σ,则E(Y) = bμ + a,D(Y) = bσ,E(XY) = E(aX + bX) = aμ + b(σ + μ),Cov(X,Y) = E(XY) − E(X)E(Y) = bσ。

相关系数是最早由统计学家卡尔·皮尔逊设计的统计指标,是研究变量之间线性相关程度的量,一般用字母r表示。由于研究对象的不同,相关系数有多种定义方式,较为常用的是皮尔逊相关系数。


相关表和相关图可反映两个变量之间的相互关系及其相关方向,但无法确切地表明两个变量之间相关的程度。相关系数是用以反映变量之间相关关系密切程度的统计指标。

相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。需要说明的是,皮尔逊相关系数并不是唯一的相关系数,但是最常见的相关系数。

如何计算相关系数

若Y=a+bX,则有:

令E(X) = μ,D(X) = σ

则E(Y) = bμ + a,D(Y) = bσ

E(XY) = E(aX + bX) = aμ + b(σ + μ)

Cov(X,Y) = E(XY) − E(X)E(Y) = bσ

(2)相关系数计算方法扩展阅读:

定义

相关关系是一种非确定性的关系,相关系数是研究变量之间线性相关程度的量。由于研究对象的不同,相关系数有如下几种定义方式。

简单相关系数:又叫相关系数或线性相关系数,一般用字母r 表示,用来度量两个变量间的线性关系。

定义式

其中,Cov(X,Y)为X与Y的协方差,Var[X]为X的方差,Var[Y]为Y的方差

复相关系数:又叫多重相关系数。复相关是指因变量与多个自变量之间的相关关系。例如,某种商品的季节性需求量与其价格水平、职工收入水平等现象之间呈现复相关关系。

典型相关系数:是先对原来各组变量进行主成分分析,得到新的线性关系的综合指标,再通过综合指标之间的线性相关系数来研究原各组变量间相关关系。

Ⅲ 怎样算两个相关系数是多少

相关系数r的计算公式是:

(3)相关系数计算方法扩展阅读:

需要说明的是,皮尔逊相关系数并不是唯一的相关系数,但是最常见的相关系数,以下解释都是针对皮尔逊相关系数。

依据相关现象之间的不同特征,其统计指标的名称有所不同。如将反映两变量间线性相关关系的统计指标称为相关系数(相关系数的平方称为判定系数);将反映两变量间曲线相关关系的统计指标称为非线性相关系数、非线性判定系数;将反映多元线性相关关系的统计指标称为复相关系数、复判定系数等。

Ⅳ 如何计算相关系数r

相关系数r的计算公式如图:

其中Cov(X,Y)为X与Y的协方差,Var[X]为X的方差,Var[Y]为Y的方差。

(4)相关系数计算方法扩展阅读:

相关系数有一个明显的缺点,即它接近于1的程度与数据组数n相关,这容易给人一种假象。因为,当n较小时,相关系数的波动较大,对有些样本相关系数的绝对值易接近于1。

当n较大时,相关系数的绝对值容易偏小。特别是当n=2时,相关系数的绝对值总为1。因此在样本容量n较小时,我们仅凭相关系数较大就判定变量x与y之间有密切的线性关系是不妥当的。

Ⅳ 相关系数如何计算,相关系数怎么计算

常见的相关系数为简单相关系数,简单相关系数又称皮尔逊相关系数或者线性相关系数,其定义式为:

(5)相关系数计算方法扩展阅读:

相关关系:当一个或几个相互联系的变量取一定的数值时,与之相对应的另一变量的值虽然不确定,但它仍按某种规律在一定的范围内变化。变量间的这种相互关系,称为具有不确定性的相关关系。

⑴完全相关:两个变量之间的关系,一个变量的数量变化由另一个变量的数量变化所惟一确定,即函数关系。

⑵不完全相关:两个变量之间的关系介于不相关和完全相关之间。

⑶不相关:如果两个变量彼此的数量变化互相独立,没有关系。

Ⅵ 相关系数公式是什么

相关系数r的计算公式是ρXY=Cov(X,Y)/√[D(X)]√[D(Y)]。

公式描述:公式中Cov(X,Y)为X,Y的协方差,D(X)、D(Y)分别为X、Y的方差。

若Y=a+bX,则有:

令E(X) =μ,D(X) =σ。

则E(Y) = bμ+a,D(Y) = bσ。

E(XY) = E(aX + bX) = aμ+b(σ+μ)。

Cov(X,Y) = E(XY)−E(X)E(Y) = bσ。

变量间的这种相互关系,称为具有不确定性的相关关系。

⑴完全相关:两个变量之间的关系,一个变量的数量变化由另一个变量的数量变化所惟一确定,即函数关系。

⑵不完全相关:两个变量之间的关系介于不相关和完全相关之间。

⑶不相关:如果两个变量彼此的数量变化互相独立,没有关系。

Ⅶ 如何计算两个股票的相关系数(correlation)(急)

计算公式为相关系数=协方差/两个项目标准差之积。
相关系数:度量两个随机变量间关联程度的量。相关系数的取值范围为(-1,+1)。当相关系数小于0时,称为负相关;大于0时,称为正相关;等于0时,称为零相关。
拓展资料:
1.协方差:如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。 如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。
2.标准差(Standard Deviation) :标准差也称均方差(mean square error),是各数据偏离平均数的距离的平均数,它是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。 格雷厄姆在1949年的着作《聪明的投资者》里说过:“经验表明在大多事例中,安全依赖于收益能力,如果收益能力不充分的话,资产就会丧失大部分的名誉(或帐面)价值。”
3.相关系数是反映两种证券之间相关性的统计方法。换句话说,这个统计告诉我们一个证券与另一个证券有多密切相关。当两种证券向上或向下同向移动时,相关系数为正。当两种证券向相反方向移动时,相关系数为负。确定两种证券之间的关系对分析跨市场关系,行业/股票关系以及行业/市场关系很有用。该指标还可以帮助投资者通过识别与股市低或负相关的证券进行多样化。 解释 相关系数在-1和+1之间振荡。这不是一个动量振荡器。
4.相反,它从正相关周期移动到周期负相关。+1被认为是完美的正相关,这是罕见的。0到+1之间的任何值表示两个证券向相同的方向移动。正相关的程度可能随时间而变化。石油股和石油大部分时间呈正相关。下面的例子显示了一只石油股股价和石油价格的关系。不出所料,20日相关系数仍然大幅上涨,经常上探+75。这两种证券之间显然存在着积极的关系。一般来说,任何超过0.50的数据都表现出强烈的正相关。

阅读全文

与相关系数计算方法相关的资料

热点内容
杜兰特真正的训练方法 浏览:318
网上买床安装方法 浏览:782
奶奶教裁剪方法简单好用 浏览:449
老人机短信中心在哪里设置方法 浏览:855
化肥中氮的含量检测方法视频 浏览:77
照片如何加水印方法 浏览:534
有点打呼噜有什么好方法 浏览:406
如何赏析诗句方法公式 浏览:725
快速融化冰块的方法 浏览:131
手臂痛怎么治疗方法 浏览:487
days360函数的使用方法 浏览:633
治疗湿尤有效方法 浏览:913
小米的快捷键设置在哪里设置方法 浏览:773
用底线思维方法解决问题 浏览:282
检测方法elisa法 浏览:196
远离口臭的最佳治疗方法 浏览:688
中药及其制剂常用的纯化方法 浏览:153
充电机使用方法步骤12V 浏览:1003
正确怀孕的方法 浏览:52
iphone6跳屏解决方法 浏览:897