❶ 平方根怎么计算
一般学习中数学考试的开方数一般都是整数的平法...非整数根的开方数不会出现在高考以及高考之前的考试中,
整数根的开方数就不说了
计算非整数根的开方数也有很多种类方法...建议直接看第二种,第一种就是爆破...(暴力破解)我更倾向于爆破...因为不用记那么多内容,而且我也不经常去计算这些数
一:
最简单的就是式商,,也就是说大概估算一下这个数的结果,需要非常了解100以内的数的平法值(可以很快计算10000以内的数的开方)比如开方40,根据平时的经验平方数是在6~7之间(6*6=36
7*7=49)并且更接近于6,那么就设定值为6.5
,6.5*6.5
=
42.25大于40---则设定为6.3
,6.3*6.3
=
39.69
---则设定6.35,6.35*6.35
=
40.3225
---则设定6.32
,6.32*6.32
=
39.9424这个数已经很接近40了,可以使用.....
二:
述求平方根的方法,称为笔算开平方法,用这个方法可以求出任何正数的算术平方根,它的计算步骤如下:
1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11'56),分成几段,表示所求平方根是几位数;
2.根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3);
3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256);
4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(3×20除
256,所得的最大整数是
4,即试商是4);
5.用商的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(20×3+4)×4=256,说明试商4就是平方根的第二位数);
6.用同样的方法,继续求平方根的其他各位上的数.
❷ 平方根的公式
平方根公式如图:
如果一个非负数x的平方等于a,那么这个非负数x叫做a的算术平方根。a的算术平方根记为,读作“根号a”,a叫做被开方数(radicand)。求一个非负数a的平方根的运算叫做开平方。
结论:被开方数越大,对应的算术平方根也越大(对所有正数都成立)。一个正数如果有平方根,那么必定有两个,它们互为相反数。
平方根,又叫二次方根,表示为〔±√ ̄〕,其中属于非负数的平方根称之为算术平方根。一个正数有两个实平方根,它们互为相反数;0只有一个平方根,就是0本身;负数有两个共轭的纯虚平方根。
❸ 平方根计算公式
比如9的平方根81,那么9的算术平方根就是正负3,两者有区别!牢记!
❹ 平方根的计算方法
67081的平方根=259
算法1:
假设被开放数为a,如果用sqrt(a)表示根号a 那么((sqrt(x)-sqrt(a/x))^2=0的根就是sqrt(a)
变形得
sqrt(a)=(x+a/x)/2
所以你只需设置一个约等于(x+a/x)/2的初始值,代入上面公式,可以得到一个更加近似的值,再将它代入,就得到一个更加精确的值……依此方法,最后得到一个足够精度的(x+a/x)/2的值。
如:计算sqrt(5)
设初值为2
1)sqrt(5)=(2+5/2)/2=2.25
2)sqrt(5)=(2.25+5/2.25)/2=2.236111
3)sqrt(5)=(2.236111+5/2.236111)/2=2.236068
这三步所得的结果和sqrt(5)相差已经小于0.001
或者可以用二分法:
设f(x)=x^2-a
那么sqrt(a)就是f(x)=0的根。
你可以先找两个正值m,n使f(m)<0,f(n)>0
根据函数的单调性,sqrt(a)就在区间(m,n)间。
然后计算(m+n)/2,计算f((m+n)/2),如果它大于零,那么sqrt(a)就在区间(m,(m+n)/2)之间。
小于零,就在((m+n)/2,n)之间,如果等于零,那么(m+n)/2当然就是sqrt(a)。这样重复几次,你可以把sqrt(a)存在的范围一步步缩小,在最后足够精确的区间内随便取一个值,它就约等于sqrt(a)。
❺ 如何计算一个数的平方根
平方根的计算方法计算方法一:我们用a来表示A的平方根,方程x-a=0的解就为A的平方根a。两边平方后有:x*x-2ax+A=0,因为x不等于0,两边除以x有:x-2a+A/x=0、a=(x+A/x)/2所以你只需设置一个约等于(x+A/x)/2的初始值,代入上面公式,可以得到一个更加近似的值。再将它代入,又可以得到一个更加精确的值……依此方法,最后得到一个足够精度的(x+A/x)/2的值即为A的平方根值。真的是这样吗?假设我们代入的值x﹤a
由于这里考虑a﹥0故:x*x﹤a*a
即x﹤A/x(x+A/x)/2﹥(x+x)/2
即(x+A/x)/2>x
即当代入的x﹤a时(x+A/x)/2的值将比x大。同样可以证明当代入的x﹥a时(x+A/x)/2的值将比x小。这样随着计算次数的增加,(x+A/x)/2的值就越来越接近a的值了。如:计算sqrt(5)
设初值为x
=
2
第一次计算:(2+5/2)/2=2.25
第二次计算:(2.25+5/2.25)/2=2.236111
第三次计算:(2.236111+5/2.236111)/2=2.236068
这三步所得的结果和5
的平方根值相差已经小于0.001
了。
计算方法二:我们可以使用二分法来计算平方根。设f(x)=x*x
-
A同样设置a为A的平方根,哪么a就是f(x)=0的根。你可以先找两个正值m,n使f(m)<0,f(n)>0
根据函数的单调性,a就在区间(m,n)间。然后计算(m+n)/2,计算f((m+n)/2),如果它大于零,那么a就在区间(m,(m+n)/2)之间。小于零,就在((m+n)/2,n)之间,如果等于零,那么(m+n)/2当然就是a。这样重复几次,你可以把a存在的范围一步步缩小,在最后足够精确的区间内随便取一个值,它就约等于a。计算方法三:以上的方法都不是很直接,在上世纪80年代的初中数学书上,都还在介绍一种比较直接的计算方法:(1)如求54756的算术平方根时先由个位向左两位两位地定位:定位为5,47,56,接着象一般除法那样列出除式.(2)先从最高位用最大平方数试商:最大平方数不超过5的是2,得商后,除式5-4后得1。把商2写上除式上。(3)加上下一位的数:得147。(4)用20去乘商后去试商147:2×20=40
这40可试商为3,那就把试商的3加上40去除147。得147÷43=3,把3写上除式上。这时147-129=18。(5)加上下一位的数:得1856。(6)用20去乘商后去试商1856:23×20=460
这460可试商为4,那就把试商的4加到460去除1856。得4,把4写上除式上。这时1856-1856=0,无余数啦。(7)这时除式上的商是234,即是54756的平方根。哪么这种计算方法是怎么得来的呢?查找了好久都没有找到答案。静下心来仔细分平方根的计算过程,后来的步骤都有20乘以也有的商再加上预计的商乘上预计的商。设也有的商为a预计的商为b就是(20*a+b)*b即20ab+b*b。而实质上预计的商是平方根中已有的商的后一位数字,平方根实际为10a+b再乘以10的N次方(N为整数),这里我们可以简化为平方根为10a+b(因为乘10的N次方只影响平方的小数点位置,对数字计算没有影响)。这下终于明白了,设a为A的平方根的前n位,b为A的平方根的n位后面的数字,哪么(10a+b)就是A的平方根。有:(10a+b)(10a+b)=100a*a+20ab+b*b=A变形后:(20a+b)b=A-100a*a上面的计算中第一次商2,然后从结果中减4实质就是A-100a*a第二次再预计商3再减去(20*2+3)*3实质就是:A-100a*a-20ab-b*b即:A-(10a+b)(10a+b)此时10a+b看作为新的已有商a,再求下一个b值。这样就可以一位一位地进行平方根的求解了。
❻ 平方根怎么算
步骤:
1、将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开,分成几段,表示所求平方根是几位数;
2、根据左边第一段里的数,求得平方根的最高位上的数;
3、从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数;
4、把求得的最高位数乘以2去试除第一个余数,所得的最大整数作为试商;
5、用商的最高位数的2倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试。
注:一个正数如果有平方根,那么必定有两个,它们互为相反数。显然,如果知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。
负数在实数系内不能开平方。只有在复数系内,负数才可以开平方。负数的平方根为一对共轭纯虚数。
例如:-1的平方根为±i,-9的平方根为±3i,其中i为虚数单位。
例如,A=5,,即求
5介于1的3次方;至2的3次方;之间(1的3次方=1,2的3次方=8)
初始值X0可以取1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,都可以。例如我们取X0 = 1.9按照公式:
第一步:X1=1.9+(5/1.9^2;-1.9)1/3=1.7。
即5/1.9×1.9=1.3850416,1.3850416-1.9=-0.5149584,-0.5149584×1/3=-0.1716528,1.9+(-0.1716528)=1.7。即取2位数值,,即1.7。
第二步:X2=1.7+(5/1.7^2;-1.7)1/3=1.71。
即5/1.7×1.7=1.73010,1.73-1.7=0.03,0.03×1/3=0.01,1.7+0.01=1.71。取3位数,比前面多取一位数。
第三步:X3=1.71+(5/1.71^2;-1.71)1/3=1.709.
第四步:X4=1.709+(5/1.709^2;-1.709)1/3=1.7099
这种方法可以自动调节,第一步与第三步取值偏大,但是计算出来以后输出值会自动转小;第二步,第四步输入值
偏小,输出值自动转大。即5=1.7099^3;
当然初始值X0也可以取1.1,1.2,1.3,。。。1.8,1.9中的任何一个,都是X1 = 1.7 > 。当然,我们在实际中初始值最好采用中间值,即1.5。 1.5+(5/1.5²-1.5)1/3=1.7。
❼ 平方根计算方法,急!
用计算器就好啦
❽ 平方根的计算方法
0.9
就是把0.81分成0.01*81
都开平方变成0.1*9=0.9
0.81的平方根是多少?
+0.9和-0.9
算术平方根是?
+0.9
多少的2次方=100分之1
0.1
√225、-√0.0001、√(-5)^2、+-√ 121分之9怎么计算啊??
225=15*15所以√225=15
0.0001=0.01*0.01所以-√0.0001=-0.01
(-5)^2=25=5*5所以√(-5)^2=5
9=3*3 121=11*11 所以+-√ 121分之9=+-3/11
总之在根号前没正负号的就是算出来正的是算术平方根
有负号才是负的
有点被拖上贼船的感觉...帮人帮到底..
已知-2是某数的一个平方根,求这个数和它的算术平方根?
多少的平方=17??
-2是某数的一个平方根
这个数是(-2)的平方=4
4的平方根是±2 算术平方根是2
多少的平方=17
17无法表示成2个相同整数相乘
所以是±√17的平方=17
❾ 2开平方计算方法
√2= 1.4142135623731 ……
√2 是一个无理数,它不能表示成两个整数之比,是一个看上去毫无规律的无限不循环小数。早在古希腊时代,人们就发现了这种奇怪的数,这推翻了古希腊数学中的基本假设,直接导致了第一次数学危机。
根号二一定是介于1与2之间的数。
然后再计算1.5的平方大小……也就是一个用二分法求方程x^2=2近似解的过程。
(9)平方根的计算方法扩展阅读:
无理数的发现:
公元前500年,毕达哥拉斯学派的弟子希伯索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可公度的(若正方形的边长为1,则对角线的长不是一个有理数),这一不可公度性与毕氏学派的“万物皆为数”(指有理数)的哲理大相径庭。
这一发现使该学派领导人惶恐,认为这将动摇他们在学术界的统治地位,于是极力封锁该真理的流传,希伯索斯被迫流亡他乡,不幸的是,在一条海船上还是遇到毕氏门徒。被毕氏门徒残忍地投入了水中杀害。科学史就这样拉开了序幕,却是一场悲剧。