1. 小学数学解决问题方法大全
小学数学解决问题的 方法 有哪些?解决问题需要注意什么问题?要抓住什么要点?下面是我为大家整理的关于小学数学解决问题 方法大全 ,希望对您有所帮助。欢迎大家阅读参考学习!
1小学数学解决问题方法大全
(1)多读题,缓慢读题,读得顺畅、连贯,划出问题,圈出关键词句。
读题有利于学生对问题的理解,有助于通过语言描述看到问题解决的契机。对于问题意义表征受阻的学困生,有必要指导他们从“指读”(用笔尖指着题目,眼睛看着所指的文字读)开始,逐步养成边读边思考,反复读几遍,直至读懂的习惯。进一步,还可以指导他们划出题中已知的数学信息和所求问题,并在句中圈出关键词。
(2)把“大数”化“小”。
例如,一本书共369页,平均每天看41页,多少天看完?对有困难的学生,只要将原题改为:一本书24 页,平均每天看8 页,多少天看完?他们往往能脱口而出“3天”。再用“小步子”进行追问:用什么方法算?怎样列式?为什么这样列式?这两题有什么相同和不同?从而使学生领悟到,两题都是求一个数里面有几个几。
(3)联系生活,想象情境。
让学生想象自己是问题中的“小明”,进入情境,想象自己拿着20元钱去买票。从而增强学生身临其境的感受,有助于解决问题。以上三条策略,其实就是过去的读题、审题策略,现在依然非常实用。
(4)列表、画图。
表、图具有直观形象的特点,可以帮助学生简洁、明了、正确地表征问题,提高解决问题的能力。在用比例知识解决正反比例的问题时,学困生往往不清楚量与量之间的对应关系。可以引导学生列表来帮助理解。
2解决问题方法
(1)培养良好的审题习惯。一要审数和符号,二要审运算顺序,明确先算什么,后算什么。三要审计算方法的合理、简便,看能否简算,然后再动手解题。
(2)养成仔细计算、规范书写的习惯。按格式书写,数位对齐,字迹工整、不潦草,保持作业的整齐美观。
(3)养成估算和验算的习惯。这是计算正确的保证。验算是一种能力,也是一种习惯。
(4)强调检查。计算都要抄题,要求学生凡是抄下来的都校对,做到不错不漏。
(5)合理使用草稿纸。在打草稿的时候,要从左往右,从上到下,有序的打下去。一张写完,再翻一张,估计位置不够不要随意下笔换一个空间大的地方打草稿。检查时,也可从草稿入手。
3解决问题方法
1、仔细观察的习惯。通过课堂上仔细观察情境图、操作的过程,发展到留心观察周围事物的习惯。
2、敢于提问的习惯。教师要引导学生不耻下问,随时表扬那些敢于、善于提问题的同学。对于学生的问题,教师要耐心解答。课堂上把提问的权利还给学生。
3、多角度思考的习惯。遇到问题不要局限或拘泥于一个角度思考问题,而是从多个角度去探讨问题的答案,鼓励学生的 创新思维 、求异思维。
4、善于联想、猜想和假设的习惯。遇到问题,无从下手时,可以大胆去猜想、假设答案,然后再往前推理。尤其是在做那些难度较大的思考题时,可用这种方法。
如果学生养成了这几种好的习惯,学生的思维灵活度便会大大提高,理解能力也会跟着上升。
4解决问题方法
(1)合理强化。
在学困生不合理的知识结构问题解决之后,应进行相应的练习。实施练习的首要原则是增强针对性,做到缺什么补什么,什么弱强化什么;同时,注意及时强化与把握好强化的频率。
及时强化是根据遗忘曲线先快后慢的规律,使学生新获得的知识点和知识结构当堂巩固;强化的频率是指根据掌握、回生的实际情况,缩短或延长强化的周期,以促进问题解决方法的内化。
(2)分解强化。
为了让学困生形成比较稳定、清晰的思路,我们通常采用“分解强化”策略实施训练,即将问题分解为若干个“小步子”,为思维的清晰化提供一个支架,再逐渐将支架拆除。
(3)顺向加工策略。
顺向加工策略,是指不考虑一道题的特殊问题,而是整体考虑该类问题所含变量能组成多少种问题情境,予以全面呈现,一一练习,以此帮助学生有效地形成解决该类型问题的知识系统。
(4)在辅导学困生时,要注意强调第四个步骤。例如,一个圆锥形的模具,底面半径是75px,高是100px。它的体积是多少?学困生往往能选择公式V = 13Sh ,但是算式却列成1/3×3×4。原来,他们直觉地认为是三个数相乘,却忽略了公式的实际意义。因此,强调所需条件,提醒关注已知数据常常是必要的。
相关 文章 :
1. 小学数学解决问题策略
2. 小学数学教学方法有哪些问题
3. 小学数学的19种学习方法
4. 小学数学应用题解题方法
5. 小学数学学好的方法和技巧
2. 初中的数学公式(解决问题的策略)
中学数学常用的解题方法
数学的解题方法是随着对数学对象的研究的深入而发展起来的。教师钻研习题、精通解题方法,可以促进教师进一步熟练地掌握中学数学教材,练好解题的基本功,提高解题技巧,积累教学资料,提高业务水平和教学能力。
下面介绍的解题方法,都是初中数学中最常用的,有些方法也是中学教学大纲要求掌握的。
1、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理
一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
6、构造法
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
7、反证法
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
8、面积法
平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
9、几何变换法
在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。
几何变换包括:(1)平移;(2)旋转;(3)对称。
10.客观性题的解题方法
选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。
填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。
要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。
(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。
(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。
(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。
(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。
(5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。
(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法。
3. 数学解决问题的方法
数学解决问题的方式主要是应用各种知识,让这些知识彼此之间配合起来,并且,配合的项目之间的联系有“单位1”,“常数”和“模式”,你也可以换用其他名字来表示这三项。也就是说,解决应用问题主要是把多种“有机联系”的方法结合起来。
4. 小学数学解决问题的四个步骤
解决问题三步骤的实施
(一)阅读与理解
1.找信息
找信息是解决问题的第一步。在低年级多是以图画、表格、对话等方式呈现问题。随着年级升高,逐渐增加纯文字问题的量。在实际教学中,对于中低年级而言,最有效的途径是知道学生学会看图,从图中收集必要的信息。教师要注意三种情况,一是题中的信息比较分散,应指导学生多次看图,将能知道的信息尽量找到;二是题中信息比较隐蔽时,容易忽略,这是要引导学生仔细看图,三是信息的数量较多,要引导学生根据问题收集有关信息。
2.提问题
提出问题比解决问题更重要。只有认识到信息之间的联系,才能提出一个合理的数学问题。教师有意识给学生提供机会,为学生营造大胆提出问题的气氛 ,引导学生学会提出问题,鼓励学生提出问题。
3.示意图
示意图让文字有了图形的辅助,有助于体现教师教学的直观性,同时能够帮助学生更好地理解和接受所学的知识。指导学生示意图,能从根本上培养和增强学生解题能力和自主学习的能力。授人以鱼不如授人以渔,学会解题方法才能从根本上学会如何做题,学会画示意图才能使学生在今后的学习中,能进行自主学习探究,找出解决问题的方法。
(二)分析与解答
1.数量关系
心理学先入为主原则,第一次学习建立起来的“模型”表象,不仅会给学生留下深刻的印象,而且还具有导向作用。在一至四年级的除法“应用题”中,都是被除数大于除数,加之教材编排题型过于单一,缺少对比呈现。如果老师教学时缺少分析“数量关系”,或者有些老师为了追求成绩,直接告诉学生:“记住你就用大数除以小数!”以至于到了五年级形成习惯。所以,“应用题”教学一定要加强“数量关系”的分析。
数量关系就是学生在运用运算意义和基本数量关系解决生产、生活中实际问题的基础上,对周围生活中的一些数量关系积累了一些感性的认识,教师可以适当地引导他们再抽象概括一些具体的数量关系式,大家习惯上称这种数量关系为“常见的数量关系”。例如:单价与数量、总价之间的关系,工作效率与工作时间、工作总量之间的关系,速度与时间、路程的关系,等等。
2.列式计算
列式计算是解决问题最重要的步骤,找信息,提问题,以及画示意图都是为了列出式子,算出答案。下了如此多的功夫就为了这一步骤,所以要求学生细心谨慎,不要看错数据。记错数。
3.回顾与反思
回顾和反思学习过程,总结学习方法,积累教学活动经验,感悟数学思想方法。在回顾中感受成功,增强学习自信心,养成反思习惯。在教学中,我们要重视回顾和反思。其实回顾与反思属于检查。检查在列式中有没有写错加减乘除,检查式子中有没有看错数据,写错数据,检查有没有计算错误,比如低年级的满十就进一,不够减就退一,乘法口诀有没有出错,高年级的小数点有没有点错,或者分数的约分是否约完整等等。
总的来说,正因为小学数学解决问题的教学是《新课程标准》中规定的课程目标之一,在小学数学中占有非常重要的地位,是教学中的最难点之一。所以就解决问题中的阅读与理解、分析与解答和回顾与反思进行浅谈,希望对小学数学解决问题的解决方法起到作用。
5. 关于小学数学应用题全部的计算公式 及方法
首先是一些面积的基本计算公式,如:圆的计算公式(面积、周长)长方形的计算公式(面积、周长)正方形、长方体、正方体、圆柱体等其他图形的计算公式。
其次,就是列方程,每次遇到不会的应用题都推荐用方程的形式来解决,这是最为简单的回答方法。其中,列方程的方法也分为好几种:1、顺着题目的意思走
2、根据题目的意思来列出等量关系(建议设单倍数为X,比较方便)
3、根据图形的计算公式来列方程
4、在一句话中,把“比”字看作一个“=”,把“是”字也看作一个“=”。
5、(关于行程问题中的相遇问题)总量=慢者先行路程+快者路程+慢者路程
6、(关于工作问题)工作效率*工作时间=工作总量
7、(关于行程问题中的相遇问题)一半路程=另一半路程
8、寻找一个不变量:总量=总量
9、(关于变化问题)三步曲:1、看始时两个物体的量
2、变化的过程
3、结果
接下来,就是一些简单的分数应用题了,建议牢记分数的四则运算,和结尾能化简就化简的原则,下面是一些简短的例子,便于理解:
加法:2/3+6/3
=6/9+6/3
=6/12
=1/2
减法:6/6-6/3
=6/(6-3)
=6/3
=2/1
乘法:6/5*6/6
=6*6/6*5
=36/30
=6/5
除法:(等于乘另一个数的倒数)6/6/5/6
=6*6/6*5
=36/30
=6/5
帮我加点¥吧,这年头出来混不容易呀!囧囧囧谢谢!!
6. 数学计算问题如何解决 关于计算方法 计算技巧 快速计算 以及无法快速计算的情况下需要怎样做
嗯....不知道你多大啊...那我大概说说
计算方法有很多:完全平方法、平方差、十字相乘法、裂项法等
技巧嘛,就是多做题,提高做题速度,练到一眼就知道用什么方法做,且做的快、准
无法快速计算的,初中可以用计算器,高中的话,实在不知道怎么做时,就一步一步来。一般可以选择加上一个数,配成完全平方后,再减去那个数。在这里就不一一列举了
码字真心很辛苦,求多点分哈~
7. 数学解决问题的方法
1、公式法:将公式直接运用到问题中,常用在代数问题中解决该类问题;
2、逆推倒想法:由问题的结论推理到问题中的条件,常用在几何问题中。解决该类问题必须掌握好几何中的定义、公理、定理和推论等;
3、数形结合法:将问题转化成图形进行解决,常用在代数中的应用题中。
总的来说,解决数学问题的方法有两种:综合法和分析法。
8. 数学解决问题的方法
总的来说,解决数学问题的方法有两种:综合法和分析法。综合法就是利用已有的条件和结论一步一步的推导出想要的结论,是一种直接解决问题的方法;分析法就是由要得到的结论倒推出必须的条件,然后再将推出的条件作为结论,继续倒推必要的条件……如此循环,直到最后推出所要的条件是已知的为止,此时问题已基本上解决了,只需按原路回推即可解决问题,这是一种间接解决问题的方法,但却行之有效。而实际应用中,往往两者结合使用。其他的那些解题方法,像转化、假设、替换、倒推等都只是这两种方法的细化而已。
9. 小学数学计算方法解决实际问题四个步骤
1、读题并找出已知条件和所求问题。
2、分析数量之间的关系,确定先算什么,再算什么。。。最后算什么。
3、列式计算。
4、检验作答。