导航:首页 > 计算方法 > 传热中逆流并流温度差的计算方法

传热中逆流并流温度差的计算方法

发布时间:2022-10-22 15:38:12

① 写出逆流型间壁式换热器对数平均温差的计算式,并说明其在温差分析中

1、在相同传热面条件下,逆流操作时加热剂(冷却剂)用量较并流小;2、在加热剂(冷却剂)用量相同条件下,逆流的换热器传热面积较并流的小;3、顺流时,热流体的出口温度总是低于冷流体的出口温度,因此在逆流时,冷热两种流体的温差值较大并且均匀,;4、逆流操作费用较顺流少。

② 逆流换热,减小对数传热温差的方法

有效地增加传热系数有这几个方法: 1.提高对数平均温差 板式换热器流型有逆流、顺流和混合流型(既有逆流又有顺流)。在相同工况下,逆流时对数平均温差最大,顺流时最小,混合流型介于二者之问。提高换热器对数平均温差的方法为尽可能采用逆流或接近逆流的混合流型,尽可能提高热侧流体的温度,降低冷侧流体的温度。 2.进出口管位置的确定 对于单流程布置的板式换热器,为检修方便,流体进出口管应尽可能布置在换热器固定端板一侧。介质的温差越大,流体的自然对流越强,形成的滞留带的影响越明显,因此介质进出口位置应按热流体上进下出,冷流体下进上出布置,以减小滞留带的影响,提高传热效率。 3.提高传热效率 板式换热器是间壁传热式换热器,冷热流体通过换热器板片传热,流体与板片直接接触,传热方式为热传导和对流传热。提高板式换热器传热效率的关键是提高传热系数和对数平均温差。 4.提高换热器传热系数只有同时提高板片冷热两侧的表面传热系数,减小污垢层热阻,选用热导率高的板片,减小板片的厚度,才能有效提高换热器的传热系数。 传热系数以往称总传热系数。国家现行标准规范统一定名为传热系数。传热系数K值,是指在稳定传热条件下,围护结构两侧空气温差为1度,单位时间通过单位面积传递的热量,反映了传热过程的强弱。

③ 板式换热器两侧的温差是如何确定的

在计算板式热交换器的液体对流传热系数、凝结传热系数及涕腾传热系数时,为了确定液体的粘度或温差,都必须知道板片表面温度。

但是,由于板式热交换器的结构关系,无法直接测定板片表面温度,所以必须通过计算求得。而板式热交换器壁温的计算又总是与传热系数发生关系,故只能采用试算的办法,具体步骤如下:

①假定一侧壁温,如Tw1

②由准则关系式求该侧传热系数a1

③由下式计算该侧单位面积上换热量q1
q1=a1(T1-Tw1)

④根据壁的热阻Rw用下式计算另一侧壁温Tw2
Tw2=Tw1-q1Rw

⑤由准则关联式求得另一侧传热系数a2

⑥计算另一侧的单位面积换量q2
q2=a2(Tm2-T2)

如果假定的壁温正确,则应有q1=q2因此,当q1≠q2时,则应重新假定壁温再行计算,直至q1与q2基本相等为止。

在试算中,为了使试算过程明了简捷,可一次假定几个壁温,使其中最低的一个明显低于实际上的壁温,而最高的一个明显高于实际壁温。将计算的各项数据列成表格,然后以q1、q2为纵座标,以Tw1或Tw2为横座标作图,即可得到两条相交的曲线,其交点为所求的壁温值。

如果板式热交换器两侧的传热系数只有一侧与壁温有关,另一侧与壁温无关,则试算工作可从与壁温无关。的这一侧开始,即先算出这一侧的传热系数,并假定该侧壁温,然后计算出另一侧的q,并使两侧的q相等为止。

在试算中如考虑污垢热阻,则壁温乃指与流体接触的垢层表面温度而非板片表面温度,在工程计算中一般可不虑垢阻对壁温的影响。

(3)传热中逆流并流温度差的计算方法扩展阅读:

a.传热系数高;

由于不同的波纹板相互倒置,构成复杂的流道,使流体在波纹板间流道内呈旋转三维流动,能在较低的雷诺数(一般Re=50~200)下产生紊流,所以传热系数高,一般认为是管壳式的3~5倍。

b.对数平均温差大,末端温差小。

在管壳式换热器中,两种流体分别在管程和壳程内流动,总体上是错流流动,对数平均温差修正系数小。

而板式换热器多是并流或逆流流动方式,其修正系数也通常在0.95左右,此外,冷、热流体在板式换热器内的流动平行于换热面、无旁流,因此使得板式换热器的末端温差小,对水换热可低于1℃,而管壳式换热器一般为5℃ff。

④ 化工原理:并流与逆流传热各有什么特点

并流与逆流传热各有什么特点
两流体均为便问传热是,且两流体进、出口温度各自相同的情况下,逆流传热的平均温度差最大,并流传热的平均温度差最小,其他流动方向的平均温度差介于逆流与并流两者之间,就传热推动力而言,逆流优于并流和其他流动方式。

⑤ 两种流体热容之比和效能应该怎么

其他复杂布置时换热器平均温差的计算 式中 是给定的冷、热流体的进、出口温度布置成逆流时的对数平均温差,?是小于1的修正系数。图9-15 ~ 9-18分别给出了管壳式换热器和交叉流式换热器的 ? 。 套管式换热器及螺旋式换热器的平均温差可以方便地按逆流或顺流布置的公式计算,以下着重讨论壳管式换热器及交叉流换热器的平均温差的计算方法。对各种布置的壳管式交叉流换热器,其平均温差都可以采用以下公式来计算: 关于?的注意事项 (1)? 值取决于无量纲参数 P和 R 式中:下标1、2分别表示两种流体,上角标 ` 表示进口,`` 表示出口,图表中均以P为横坐标,R为参量。 (3)R的物理意义:两种流体的热容量之比 (2)P的物理意义:流体2的实际温升与理论上所能达到 的最大温升之比,所以只能小于1 (4) 对于管壳式换热器,查图时需要注意流动的“程”数 4 各种流动形式的比较 顺流和逆流是两种极端情况,在相同的进出口温度下,逆流的 最大,顺流则最小; 顺流时 ,而逆流时, 则可能大于 ,可见,逆流布置时的换热最强。 In Out In Out 那么是不是所有的换热器都设计成逆流形式的就最好呢?不是,因为一台换热器的设计要考虑很多因素,而不仅仅是换热的强弱。比如,逆流时冷热流体的最高温度均出现在换热器的同一侧,使得该处的壁温特别高,可能对换热器产生破坏,因此,对于高温换热器,又是需要故意设计成顺流 (2) 对于有相变的换热器,如蒸发器和冷凝器,发生相变的流体温度不变,所以不存在顺流还是逆流的问题。 x T In Out x T In Out 冷凝 蒸发 (3)工程中对流经蛇行管束的传热,只要管束的曲折次数超过四次,就可作为纯顺流和纯逆流处理(见图9-21)。 (4)其它流动形式都可以看作介于顺流、逆流之间的情况。 值总是小于1的。 值实际上表示特定流动形式在给定工况下接近逆流的程度。在设计中(除非出于必须降低壁温的目的),否则总是要求 >0.9,至于不小于0.8。如果达不到要求,则应改为其它的流动形式。 § 10-4 换热器的热计算 换热器热计算分两种情况:设计计算和校核计算 (1)设计计算:设计一个新的换热器,以确定所需的换热面积 校核计算:对已有或已选定了换热面积的换热器,在非设 计工况条件下,核算他能否胜任规定的新任务。 换热器热计算的基本方程式是传热方程式及热平衡式 式中, 不是独立变量,因为它取决于 以及换热器的布置。另外,根据公式(9-15)可是,一旦 和 以及 中的三个已知的话,我 们就可以计算出另外一个温度。因此,上面的两个方程 中共有8个未知数,即 需要给定其中的5个变量,才可以计算另外三个变量。 对于设计计算而言,给定的是 ,以及进出口 温度中的三个,最终求 对于校核计算而言,给定的一般是 , 以及2个进口温度,待求的是 换热器的热计算有两种方法:平均温差法 效能-传热单元数(?-NTU)法 平均温差法:就是直接应用传热方程和热平衡方程进行热 计算,其具体步骤如下: 对于设计计算(已知 ,及进出口温度中的三个,求 ) 初步布置换热面,并计算出相应的总传热系数k 根据给定条件,由热平衡式求出进、出口温度中的那个待定的温度 由冷热流体的4个进出口温度确定平均温差 计算时要保持修正系数具有合适的数值。 由传热方程式计算所需的换热面积A,并核算换热面两侧流体的流动阻力 如果流动阻力过大,则需要改变方案重新设计。 对于校核计算(已知 ,及两个进口温度,求 ) 先假设一个流体的出口温度,按热平衡式计算另一个出口温度 根据4个进出口温度求得平均温差 根据换热器的结构,算出相应工作条件下的总传热系数k 已知kA和 ,按传热方程式计算在假设出口温度下的 根据4个进出口温度,用热平衡式计算另一个 ,这个值和上面的 ,都是在假设出口温度下得到的,因此,都不是真实的换热量 比较两个 ? 值,满足精度要求,则结束,否则,重新假定出口温度,重复(1)~(6),直至满足精度要求。 2 效能-传热单元数法 (1) 换热器的效能和传热单元数 换热其效能的定义是基于如下思想:当换热器无限长,对于一个逆流换热器来讲,则会发生如下情况 a 当 时, ,则 b 当 时, ,则 于是,我们可以得到 然而,实际情况的传热量q总是小于可能的最大传热量qmax,我们将q/qmax定义为换热器的效能,并用 ? 表示,即 对于一个已存在的换热器,如果已知了效能 ? 和冷热流体的进口温差,则实际传热量可很方便地求出 那么在未知传热量,之前, ? 又如何计算?和那些因素有关? 以顺流换热器为例,并假设 ,则有 根据热平衡式得: 于是 式①, ②相加: 热容比 ① ② 式①代入下式得: + + 当 时,同样的推导过程可得: 上面的推导过程得到如下结果,对于顺流: 当 时

⑥ 化工高手请进:传热并流和逆流问题

解:
并流时:已知T1=90℃,T2=50℃,t1=20℃,t2=40℃
所以Δt1=90-20=70℃,Δt2=50-40=10摄氏度
ΔTm=Δt2-Δt1/lnΔt2/Δt1=30.8℃
又Q=KAΔTm=Knπdl
所以l=Q/ΔTmKnπd=50.5m
逆流时:同理可求l=39.6m。

⑦ 传热系数的计算公式是什么

传热系数是一个过程量,其大小取决于壁面两侧流体的物性、流速,固体表面的形状、材料的导热 系数等因素。在建筑物热损失计算中,是表征外围护结构总传热性能的参数,其值取决于围护结构所采用的材料、构造及其两侧的环境因素。

传热系数以往称总传热系数。国家现行标准规范统一定名为传热系数。传热系数K值,是指在稳定传热条件下,围护结构两侧空气温差为1度(K,℃),1小时内通过1平方米面积传递的热量,单位是瓦/平方米·度(W/㎡·K,此处K可用℃代替)。

(7)传热中逆流并流温度差的计算方法扩展阅读

传热现象将传导、对流和辐射3种基本方式一并考虑。传热系数其值是当两边流体间的温度差为1℃时,在单位时间(1小时)内,每单位壁面(1m2)所通过的热量(kJ),单位为kJ/(m2.h·K)。

传热系数愈大,传热效率愈高。导热系数:在稳态条件下,1m厚的物体,两侧表面温差为1℃,1h内通过1m2面积传递的热量;

传热系数:在稳态条件下,围护结构两侧空气温差为1℃(1K),1h内通过1m2面积传递的热量;K值只有经试验确定,试验方法上有计算公式热流系数应该就是两侧温差为1K单位时间内通过的热量。

⑧ 冷库热负荷如何计算

板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。以下五个参数在板式换热器的选型计算中是必须的:总传热量(单位:kW).
一次侧、二次侧的进出口温度
一次侧、二次侧的允许压力降
最高工作温度
最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。温度T1 = 热侧进口温度
T2 = 热侧出口温度
t1 = 冷侧进口温度
t2= 冷侧出口温度
热负荷热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为:

(热流体放出的热流量)=(冷流体吸收的热流量)

在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。

(1) 无相变化传热过程式中
Q----冷流体吸收或热流体放出的热流量,W;
mh,mc-----热、冷流体的质量流量,kg/s;
Cph,Cpc------热、冷流体的比定压热容,kJ/(kg·K);
T1,t1 ------热、冷流体的进口温度,K;
T2,t2------热、冷流体的出口温度,K。(2)有相变化传热过程

两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为:

一侧有相变化


两侧物流均发生相变化 ,如一侧冷凝另一侧沸腾的传热过程式中
r,r1,r2--------物流相变热,J/kg;
D,D1,D2--------相变物流量,kg/s。

对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。对数平均温差(LMTD)对数平均温差是换热器传热的动力,对数平均温差的大小直接关系到换热器传热难易程度.在某些特殊情况下无法计算对数平均温差,此时用算术平均温差代替对数平均温差,介质在逆流情况和在并流情况下的对数平均温差的计算方式是不同的。在一些特殊情况下,用算术平均温差代替对数平均温差。逆流时:
并流时:
热长(F)热长和一侧的温度差和对数平均温差相关联。 F = dt/LMTD以下四个介质的物理性质影响的传热 密度、粘度、比热容、导热系数总传热系数总传热系数是用来衡量换热器传热阻力的一个参数。传热阻力主要是由传热板片材料和厚度、污垢和流体本身等因素构成。单位:W/m2 ℃ or kcal/h,m2 ℃.压力降压力降直接影响到板式换热器的大小,如果有较大的允许压力降,则可能减少换热器的成本,但会损失泵的功率,增加运行费用。一般情况下,在水水换热情况下,允许压力降一般在20-100KPa是可以解接受的。污垢系数和管壳式换热器相比,板式换热器中水的流动是处于高湍流状态,同一种介质的相对于板式换热器的污垢系数要小的多。在无法确定水的污垢系数的情况下,在计算时可以保留10%的富裕量。计算方法热负荷可以用下式表示:Q = m · cp · dtQ = k · A · LMTDQ = 热负荷 (kW)
m = 质量流速 (kg/s)
cp = 比热 (kJ/kg ℃)
dt = 介质的进出口温度差 (℃)
k = 总传热系数 (W/m2 ℃)
A = 传热面积 (m2)
LMTD = 对数平均温差
总的传热系数用下式计算:

其中:
k=总传热系数(W/m2 ℃)
α1 = 一次测的换热系数(W/m2 ℃)
α2 = 一次测的换热系数(W/m2 ℃)
δ=传热板片的厚度(m)
λ=板片的导热系数 (W/m ℃)
R1、R2分别是两侧的污垢系数 (m2 ℃/W)α1、α2可以用努赛尔准则式求得。 冷库热负荷的计算:基本情况 外型尺寸 冷库长 3.3 m 环境温度T1 30 ℃
冷库宽 3.3 m 库内温度T2 -18 ℃
冷库高 2.5 m 温度差 △T 48 ℃
冷库容积 23 m3 库内照明 240 W
外表面积 18.2 m2 库内电机 210 W
隔热材料 种类 聚苯板 作业人数 2 人/日
厚度 0.15 m 作业时间 3 H
传热系数 0.025 Kcal/mh℃ (查表)
储藏物品 货物名称 日入库量 750 kg
冻结前比热 0.77 C (查表) 入库温度 30 ℃
潜热 10 C (查表) 降温时间 8 h
冻结后比热 10 C (查表) 要求温度 -18 ℃

侵入热(侧板) 隔热材料厚度 导热系数 温度差 △T 外表面积A Qa=λ/L×△T×A
Qa 150 mm 0.166666667 48 33 264 Kcal/h
侵入热(底板) 隔热材料厚度 导热系数 温度差 △T 外表面积A Qb=λ/L×△T×A
Qb 150 mm 0.166666667 33 10.89 60 Kcal/h
侵入热(天棚) 隔热材料厚度 导热系数 温度差 △T 外表面积A Qc=λ/L×△T×A
Qc 150 mm 0.166666667 53 10.89 96 Kcal/h
Q1计算 Q1=Qa+Qb+Qc 420 Kcal/h
货物热(冻前) 入库量 比热 温度差 △T 降温时间 Qd=W×C×△T×1/T
Qd 750 kg 0.77 48 8 3465 Kcal/h
货物热(潜热) 入库量 比热 温度差 △T 降温时间 Qe=W×C×△T×1/T
Qe 750 kg 10 8 0 Kcal/h
货物热(冻后) 入库量 比热 温度差 △T 降温时间 Qf=W×C×△T×1/T
Qf 750 kg 10 8 0 Kcal/h
Q2计算 Q2=Qd+Qe+Qf 3465.00 Kcal/h
换气热 内容积 开门次数 换气热量 — Q3=V×n×E×1/24
Q3 23 16 24.6 — 382 Kcal/h
电灯热 总功率 日照时间 — — Q4=W×0.86×H×1/24
Q4计算 240 3 — — 26 Kcal/h
电机热 总功率 日运转时间 — — Q5=W×0.86×H×1/24
Q5计算 210 24 — — 181 Kcal/h
操作热 人数 工作时间 发热量 — Q6=N×H×C×1/24
Q6计算 2 3 240 — 60 Kcal/h
除霜热 总功率 除霜时间H 除霜次数 — Q4=W×0.86×H×n×1/24
Q7计算 3938 0.5 4 — 282 Kcal/h
全部热负荷 安全率Sf 1.1 运转率RT 0.8
QT QT=(Q1+Q2+Q3+Q4+Q5+Q6+Q7)×Sf/RT 6622.17 Kcal/h

压缩机型号为:8P

⑨ 热传递的计算公式有哪些

热传递的计算公式:

(9)传热中逆流并流温度差的计算方法扩展阅读

工业上有许多以热传导为主的传热过程,如橡胶制品的加热硫化、钢锻件的热处理等。在窑炉、传热设备和热绝缘的设计计算及催化剂颗粒的温度分布分析中,热传导规律都占有重要地位。

在高温高压设备(如氨合成塔及大型乙烯装置中的废热锅炉等)的设计中,也需用热传导规律来计算设备各传热间壁内的温度分布,以便进行热应力分析。

靠气体或液体的流动来传热的方式叫做热对流。液体或气体中较热部分和较冷部分之间通过循环流动使温度趋于均匀的过程。

对流是液体和气体中热传递的主要方式,气体的对流现象比液体明显。

对流可分自然对流和强迫对流两种。自然对流往往自然发生,是由于温度不均匀而引起的。强迫对流是由于外界的影响对流体搅拌而形成的。

阅读全文

与传热中逆流并流温度差的计算方法相关的资料

热点内容
快速去除甲醛的小方法你知道几个 浏览:798
自行车架尺寸测量方法 浏览:118
石磨子的制作方法视频 浏览:146
行善修心的正确方法 浏览:400
薯仔炖鸡汤的正确方法和步骤 浏览:272
北京电流检测方法 浏览:481
手机u盘保护方法 浏览:113
数字搭配有哪些方法 浏览:666
约一场球的正确方法 浏览:187
在家中洗衣服的方法如何 浏览:293
28天锻炼腹肌最快的方法 浏览:201
简单练翘臀方法视频 浏览:758
心理诊断评估常用的方法有哪些 浏览:843
什么方法能让手机不黑屏 浏览:721
电脑开机慢的处理方法视频 浏览:724
后天形成内斜视训练方法有哪些 浏览:361
羊脂白的鉴别方法 浏览:623
家常腌酸菜方法视频 浏览:256
黄安伦的教学方法 浏览:963
做糖最简便的方法 浏览:640