❶ 加法计算的方法有很多,可以用数数法算出的数,也可以用从第一个加数起接着数的方法算出的数,还可以用数
加法计算的方法有很多,可以用数数算法出得数,也可以用从第一个加数起接着数的.还可以用数的什么知识计算
❷ 加减法要怎么算简单
一、进位加法的简单计算方法
不管多大的数相加其最基本的原则都是20以内的加法原则,20以内进位加法的速算口诀为:几加九进十减一、几加八进十减二、几加七进十减三、几加六进十减四 。由于加法具有交换律,所以我们只需要记住这几句就可以了,在100以内的加法中,先观察两个各位数字,找出他们中间较大的数,按口诀进行计算可以很快的算出答案。
[例1]: 26+39=
我们观察发现两个各位数字分别是6和9,6+9大于10,需要进位,较大的是9,所以应用“几加九进十减一”得到答案的十位就是2+3+1=6,个位就是给6减1等于5,所以答案就是65.
二、退位减法的简答计算方法
100以内数的退位减法也是以20以内数的退位减法为基础的,退位减法的速算口诀为:几减九退十加一、几减八退十加二、几减七退十加三、几减六退十加四、几减五退十加五、几减四退十加六、几减三退十加七、几减二退十加八、几减一退十加九。由于减法中减数和被减数不能交换位置,所以在减法中,先观察两个个位数,当减数比被减数的个位大时,根据减数的各位选择口诀进行计算,即可以很快的算出答案。
[例2]: 54—29=
我们通过观察发现被减数的个位是4,减数的个位是9,4<9,需要退位,所以应用“几减九退十加一”得到答案的十位就是5—2—1=2,个位就是给4+1=5,所以得到答案为25.
理解 并融会贯通 100以内加减法不是问题。加油!
❸ 加法验算的方法有哪些
加法验算(checking computations of addition)指检验加法运算的过程和结果是否正确的方法。加法的验算方法有以下几种:1.用减法验算:根据减法是加法的逆运算,将其和减去它的一个加数,如果计算是正确的,所得的差必然等于另一个加数;2.用加法验算:根据加法交换律,将加数交换位置再相加,如果计算是正确的,两次加得的结果必然相同;3.用弃九法验算。
1基本介绍编辑
加法验算是检查加法运算是否正确的方法。加法的验算方法如下:复算验算法(把原来计算的式子再重新算一遍。若两次计算的结果相同,说明计算正确)。另外还有用加法验算,用减法验算,用弃九法验算。
2用加法验算编辑
根据加法交换律,交换加数的位置后,再加一次。如果两次计算的结果相同,说明原计算是正确的。
例 486+278=764
3用减法验算编辑
把加法计算得出的和减去其中一个加数,减得的结果如果等于另一个加数,说明计算是正确的。
例 329+96=425
验算:
4用弃九法验算编辑
弃九法又称九余数法。它是依据九余数的特点,用来检验加、减、乘、除四则运算是否正确的一种验算方法。
(1)检验加法时,如果各个加数的九余数之和(如超过9再减去9的倍数)等于和的九余数时,其计算结果可能就是正确的。
14367+7289=21656
例如: 12-9=3
3+8=11 5+6=11
11-9=11-9
又如:81369+72459=153828
0+0=18-9×2
(2)检验减法时,如果被减数的九余数减去减数的九余数所得的差。等于差的九余数时,计算结果可能就是正确的。
❹ 一年级数学竖式计算方法 加法竖式如何计算
1、加法竖式计算方法:数位对齐:个位对个位,十位对十位,加号往前移,计算先从个位算起,个位数和个位数相加,得数写在个位上,十位数与十位数相加,得数写在十位上。
2、减法竖式计算方法:数位对齐,个位对个位,十位对十位,减号往前移,计算先从个位起,个位相减,得数写在个位上,十位相减,得数写在十位上。
3、竖式计算是指在计算过程中列一道竖式计算,使计算简便。加法计算时相同数位对齐,若和超过10,则向前进1。减法计算时相同数位对齐,若不够减,则向前一位借1当10。
❺ 使用加法运算律的五个方法
使用用加法运算律的方法,首先需了解具体的解答方法,这样才可以进行运用更方便的方法进行计算的。因此,详细的信息如下:
首先熟悉加法的概念。拿出一把小黄豆(或其它小物体)。将一些黄豆放在一边形成一堆,然后从1开始数这一堆黄豆有多少个(从1、2、3数到最后一个黄豆)。
数到最后一个黄豆的数字就是这一堆黄豆的总数。在纸上记录黄豆总数的数字。然后再数另一堆有多少个黄豆。此时,将两堆黄豆放在一起。这一大堆黄豆有多少个呢?你可以再从1开始数豆子。最后就会发现混合后豆子的总数就是之前两堆豆子的数量相加的和。这就是加法运算。
例如,第一堆有5个豆子,第二堆有3个豆子。当你将两堆豆子混在一起再进行计数时,发现总共有8个豆子。这就是5 + 3等于8。
2
学习“数对”。由于大多数人都习惯以10为单位计数,所以熟记和为10的一对数可以让加法更简单。掌握那些两数和为10的数对。例如:1+9,2+8,3+7,4+6,5+5。
3
尽可能地将数字配对组成“数对”。尽可能地将数字和数字配对,使之和为十的倍数。
让我们以下列数字为例:2,16,9,3,5,18。你可以将2和18配对相加得到20。由于4和6相加正好是10,那么从5取出4来和16相加得到20,。然后将剩余的1和9相加得到10。
4
将额外部分数字相加。凑完整十数之后,再加上余下的数字,用笔算或心算将其相加即可。
在之前的例子中,将数对相加后得到50,只剩下3这个数字。这就非常简单了。你可以在脑海中进行简单的计算,将50和3相加即可得到结果。
5
仔细检查你的运算结果。只要有时间,你最好每次都用其它方法来复检你的运算结果以保证运算正确。
方法
2
大数目相加运算
1
学习数位的概念。当你书写数字时,每个数字的位置都有其特定的名字或类型。掌握数位的概念可以帮助你正确地排列数字及运算。例如:
在2中,数字2本身位于个位数位置。
在数字20中,2位于十位数的位置。
在数字200中,2位于百位数的位置。
所以,在数字365中,5位于个位数位置,6位于十位数位置,3位于百位数位置。
2
排列数字。在计算加法运算时,先将数字按位数从多到少来从上向下地排列数字。排列数字是为了让数字的每个相同的数位进行对齐。如果一个数字没有高位数,那么就在其左侧空出一个数位。例如,如果你想要计算16、4和342相加的结果,你应该这样写下三个数字:
将第一列数字相加。从右边开始,将最右侧的一列数字相加。将相加得到的结果写在这一列的下方位置。按照该法将其它列数字相加并写下结果。
在我们上面的例子中。当我们将右侧的2、6和4相加时,得到12。然后将12中的2写在最右栏的下方。
4
向前一个数位进位。如果个位数数字相加得到的结果在十位数上有数字,那么在左侧一栏的顶部写下十位上的数字。
在本例中,个位数相加得到12,我们将其中的1写在中间一栏的顶部。即342中4的上方。
5
计算下一栏。计算完个位数一栏,我们需要计算左侧十位上数字之和,这也包括进位的数字。然后将计算结果写在中间栏的下方。
在本例中,我们将12中的1、342中的4和16中的1相加得到6。
6
得到最后的和。从右向左,按上述方法将每一栏的数字相加,直到所有位数计算完毕。那么写在底部的数字就是加法运算的结果。
在本例中,三数之和是362。
方法
3
小数的加法运算
1
将小数进行排列。当一个数字带有小数点时(例如:24.5),那么你在计算小数相加时要格外仔细才行。主要的窍门就是根据小数点的位置排列所有数字。数字的小数点对齐,自成一列。[1]例如:
2
排列没有小数点的数字。如果其中一个加数没有小数点,那么在其右侧补一位小数点后的0来对齐数字。
在上述例子中,由于15后面没有0,所以在15后加一个小数点和0,使得数字的列一目了然。
3
按照正常的计算规则来相加。当你将数字正确地排列起来后,你就将每个数位上数字相加来求和即可。
4
分数的加法运算
1
将各个分数的分母化为相同的分母。分母是分数式横线下方的数字。在计算分数相加时,你需要将分母化成相同的数字,然后将分子相加。你可以将分子分母同时乘以(或除以)一个相同的数字来转化分数,知道所有分数的分母大小相同。例如,我们想要计算1/8和3/4的和:
首先需要将两者的分母化成一样的。那么如何将4化成8呢?方法就是将分子分母同时乘以2!
将分数3/4的3和4都乘以2得到6/8。
2
将分子相加。分子是分数式横线上方的数字。现在我们有分数1/8和6/8,我们将1和6相加得到7。
3
得到和。将分子相加的和放在分母的上方,分母保持不变,得到最终的结果。在本例中,最后的结果是7/8。
4
化简分数。你也许希望简化分数来方便阅读。你可以用分子和分母同时除以其相同的因数来化简分数。在本例中,我们不需要化简。因为它已经是最简形式了。但是如果你得到的是一个像3/6这样的结果,那么你需要将其进行化简。
当我们发现分子分母可以同时除以一个小数字时,我们就可以将分数化简。在本例中,我们用两者都除以3来化简,得到结果1/2。
方法
5
1
凑数计算。如果你只计算几个数字的和,并且这些数字中没有恰巧可以凑成整10数的,那么你可以通过加上或者减去一个数来简化计算。比如, 19 + 30,相比之下20 + 30是不是更好计算呢? 所以,先给19加1,然后再计算结果,最后再从结果中减去1,即:19 + 1 + 30 = 50,50 - 1 = 49。
2
分组。和上面讨论的“数对”类似,将所有的数字分组,让每组的和为5或10(或者50、100、500、1000等等)。然后再求各组的和,这样计算就简便了。
比如,7+1+2=10和2+3=5,所以1+2+2+3+7的结果就是15。
3
分部计算。将数字分成整十数和个位数,然后分别求和。比如,先计算40+30+10,再计算2+5+7,这样计算会比直接计算42+35+17简单。
4
利用数字的形状。如果你想快速心算,那么分组的方法可能并不适合你。你可以利用数字的形状计算加法,而不是靠数手指。这个方法最适合用于几个数字求和的情况。比如:
数字2和数字3都有两个终点。
数字4和5都有各自的终点数和部分数,其中5上的圆弧看作是一个部分。
像6、7、8、9这样的数字就不那么明显了。 6和9的弧线可以看作为3个点(上、中、下),数两遍就是6,数三遍就是9。数字8中的每个圆的一半都记为1(一共4条),数两遍就是8。数字7上方的短线可以认为有3个点,余下的部分有4个点。
小提示
如果加法运算比较复杂有难度(例如计算22+47的和),那么你需要学习更多高级的加法计算方法。
如果加法运算非常简单,比如计算10以下的运算(如2+5)时,你可以不用笔算,用手指计数即可。
当儿童掌握了这个技巧之后,你可以教他们不从数字1开始数,而是从第一个数字开始数。比如8+2,准备两个标记,然后从8开头的数列开始数两次,得到10。这个方法适用于数字的和大于10的情况,当然小于等于10也可以用。
❻ 加法计算方法
加法是基本的四则运算之一,它是指将两个或者两个以上的数、量合起来,变成一个数、量的计算。表达加法的符号为加号“+”。进行加法时以加号将各项连接起来。
加法(通常用加号“+”表示)是算术的四个基本操作之一,其余的是减法,乘法和除法。 例如,在下面的图片中,共有三个苹果和两个苹果的组合,共计五个苹果。 该观察结果等同于数学表达式“3 + 2 = 5”,即“3加2等于5”。
除了计算水果,也可以计算其他物理对象。 使用系统泛化,也可以在更抽象的数量上定义加法,例如整数,有理数,实数和复数以及其他抽象对象,如向量和矩阵。
在算术中,已经设计了涉及分数和负数的加法规则。
加法有几个重要的属性。 它是可交换的,这意味着顺序并不重要,它又是相互关联的,这意味着当添加两个以上的数字时,执行加法的顺序并不重要。 重复加1与计数相同; 加0不改变结果。 加法还遵循相关操作(如减法和乘法)。
加法是最简单的数字任务之一。 最基本的加法:1 + 1,可以由五个月的婴儿,甚至其他动物物种进行计算。 在小学教育中,学生被教导在十进制系统中进行数字的叠加计算,从一位的数字开始,逐步解决更难的数字计算。
❼ 加法怎么算
不管多大的数相加其最基本的原则都是20以内的加法原则,20以内进位加法的速算口诀为:几加九进十减一、几加八进十减二、几加七进十减三、几加六进十减四 。由于加法具有交换律,所以我们只需要记住这几句就可以了,在100以内的加法中,先观察两个各位数字,找出他们中间较大的数,按口诀进行计算可以很快的算出答案。
例126+39
我们观察发现两个各位数字分别是6和9,6+9大于10,需要进位,较大的是9,所以应用“几加九进十减一”得到答案的十位就是2+3+1=6,个位就是给6减1等于5,所以答案就是65.
❽ 小学数学加减法速算方法与技巧
小学学生的加减法运算能力是非常重要的数学能力,运算能力不仅包括理解运算算理,掌握运算方法,还包括在遇到问题时能够找到合理简便的运算途径。
速算不仅能简化计算过程,化繁为简,化难为易,同时又会提高计算效率。
因此在学习过程中,不仅需要掌握计算法则,还需要学会一些运算技巧。
凑整"先计算
在进行加法运算时,若能对算式的各项恰当地分组,会使计算过程大大简化。两个数相加,若能恰好凑成整十、整百、整千、整万…则先计算。
如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
又如:12+88=100,35+65=100,21+79=100,44+56=100,55+45=100。
在上面算式中,1叫9的"补数";79叫21的"补数",44也叫56的"补数",也就是说两个数互为"补数"。
例题1.计算53+55+47
解:原式=(53+47)+55
=155
计算23+39+61
解:原式=23+(39+61)
=23+100
=123
对于不能直接凑整的,可以把其中一个数进行拆分,再凑整。
例题2.计算87+15
解:原式=87+13+2
=(87+13)+2
=100+2
=102
计算54+79
解:原式=33+21+79
=33+(21+79)
=33+100
=133
计算65+18+27
解:原式=60+2+3+18+27
=60+(2+18)+(3+27)
=60+20+30
=110
对于没有直接凑整的数的,可以先凑整,最后再减去凑整的数。
例题3.计算:38+29+19
解:原式=(38+2)+(29+1)+(19+1)-4
=40+30+20-4
=90-4
=86
等差数列
计算等差连续数(等差数列)的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:
1,2,3,4,5,6,7,8,9
1,3,5,7,9
2,4,6,8,10
3,6,9,12,15
4,8,12,16,20等都是等差连续数
1、等差连续数的个数是奇数时,它们的和等于中间数乘以个数。
例题4.计算1+2+3+4+5+6+7+8+9
解:原式=5×9(中间数是5,共9个数)
=45
计算1+3+5+7+9+11+13
解:原式=7×7(中间数是7,共7个数)
=49
计算2+4+6+8+10
解:原式=6×5(中间数是6,共5个数)
=30
2、等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半。
例题5.计算1+2+3+4+5+6+7+8+9+10
共10个数,个数的一半是5,首数是1,末数是10。
解:原式=(1+10)×5
=11×5
=55
计算1+3+5+7+9+11+13+15
共8个数,个数的一半是4,首数是1,末数是15。
解:原式=(1+15)×4
=16×4
=64
计算2+4+6+8+10+12
共6个数,个数的一半是3,首数是2,末数是12。
解:原式=(2+12)×3
=14×3
=42
基准数法
先观察各个加数的大小接近什么数字,再把每个加数先按接近的数字相加,然后再把少算的加上,把多算的减去。
例题6.计算23+22+24+18+19+17
通过观察发现所有的加项比较接近20
解:原式=20×6+3+2+4-2-1-3
=120+9-6
=123
计算103+102+101+99+98
所有加项比较接近100
解:原式=100×5+3+2+1-1-2
=500+3
=503
减法中的巧算
1、把几个互为"补数"的减数先加起来,再从被减数中减去。
例题7.计算 400-63-37
解:原式= 400-(63+37)
=400-100
=300
计算1000-90-80-10-20
解:原式=1000-(90+80+10+20)
=1000-200
=800
2、先减去那些与被减数有相同尾数的减数。
例题8.计算4622-(622+149)
解:原式=4000-149
=3851
3、利用"补数"先凑整,再运算(注意把多加的数再减去,把多减的数再加上)。
例题9.计算505-397
解:原式=500+5-400+3(把多减的 3再加上)
=108
计算523-289
解:原式=523-300+11(把多减的11再加上)
=223+11
=234
计算358+997
解:原式=358+1000-3(把多加的3再减去)
=1355
加减混合式的运算
1、去括号和添括号的法则
在只有加减运算的算式里,如果括号前面是"+"号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是"-"号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,"+"变"-","-"变"+"。
例题10.计算200-20-10-30
解:原式=200-(10+20+30)
=200-60
=140
计算100-40+30
解:原式=100-(40-30)
=100-10
=90
2、带符号"搬家"
例题11.计算 545+47-145+53
解:原式=545-145+47+53
=(545-145)+(47+53)
=400+100
=500
注意:每个数前面的运算符号是这个数的符号,如+47,-145,+53。而545前面虽然没有符号,应看作是+545。
3、两个数相同而符号相反的数可以直接"抵消"掉
例题12.计算18+2-18+4
解:原式=18-18+2+4
=6
❾ 加法有几种验算方法
加法竖式计算及验算812+382
解题思路:两个加数的个位对齐,再分别在相同计数单位上的数相加,相加结果满10则向高位进1,高位相加需要累加低位进1的结果。
解题过程:
步骤一:2+2=4
步骤二:1+8=9
步骤三:8+3=1 向高位进1
根据以上计算步骤组合计算结果为1194
验算:1194-382=812
(9)加法计算方法很多扩展阅读~验算结果:将减数与被减数个位对齐,再分别与对应计数单位上的数相减,不够减的需向高位借1,依次计算可以得出结果,减数小于被减数将两数调换相减最后结果加个负号;小数部分相减可参照整数相减步骤;
解题过程:
步骤一:4-2=2
步骤二:9-8=1
步骤三:11-3=8 向高位借1
步骤四:1-0-1=0
根据以上计算步骤组合计算结果为812
存疑请追问,满意请采纳
❿ 100以内的加减法的计算方法有哪些
1、同级运算时,从左到右依次计算。
2、两级运算时,先算乘除,后算加减。
3、有括号时,先算括号里面的,再算括号外面的。
4、有多层括号时,先算小括号里的,再算中括号里面的,,再算大括号里面的,最后算括号外面的。
5、要是有乘方,最先算乘方。
6、在混合运算中,先算括号内的数 ,括号从小到大,如有乘方先算乘方,然后从高级到低级。
综合算式方法:
1、如果只有加和减或者只有乘和除,从左往右计算,例如:2+1-1=2,先算2+1的得数,2+1的得数再减1。
2、如果一级运算和二级运算,同时有,先算二级运算
3、如果一级,二级,三级运算(即乘方、开方和对数运算)同时有,先算三级运算再算其他两级。
4、如果有括号,要先算括号里的数(不管它是什么级的,都要先算)。
5、在括号里面,也要先算三级,然后到二级、一级。
运算性质:
从加法交换律和结合律可以得到:几个加数相加,可以任意交换加数的位置;或者先把几个加数相加再和其他的加数相加,它们的和不变。
一个数减去两个数的和,等于从这个数中依次减去和里的每一个加数。一个数减去两个数的差,等于这个数先减去差里的被减数,再加上减数。
几个数的和减去一个数,可以选其中任一个加数减去这个数,再同其余的加数相加。一个数连续减去几个数,可以先把所有的减数相加,再从被减数里减去减数相加的和。
几个数的积乘一个数,可以让积里的任意一个因数乘这个数,再和其他数相乘。两个数的差与一个数相乘,可以让被减数和减数分别与这个数相乘,再把所得的积相减。
若某数除以(或乘)一个数,又乘(或除以)同一个数,则这个数不变。一个数除以几个数的积,可以用这个数依次除以积里的各个因数。
一个数除以两个数的商,等于这个数先除以商中的被除数,再乘商中的除数。几个数的积除以一个数,可以让积里的任何一个因数除以这个数,再与其他的因数相乘。