‘壹’ 解方程的求解方法 方程的计算方法
1、有分母先去分母。
2、有括号就去括号。
3、需要移项就进行移项。
4、合并同类项。
5、系数化为1求得未知数的值。
6、开头要写“解”。
例如:
3+x=18
解:x=18-3
x=15
7、使方程左右两边相等的未知数的值,叫做方程的解。求方程的解的过程叫做解方程。必须含有未知数等式的等式才叫方程。等式不一定是方程,方程一定是等式。
‘贰’ 有关方程的计算方法
这些题属于初中内容,解方程的步骤分为:去分母,移项,合并同类项,x系数化为1.具体讲你给出的题目
第一个:去分母得4X=5(960+2080),合并同类项得4x=15200,系数化为1得x=3800
第二个:去分母(等式两边同时乘以30x)得6x+60=10x,移项得4x=60,系数化为1得x=1
第三个:等式两边同时乘以18得9(x-800)=13x-14400,移项4x=7200,系数化为1得x=18
第四个同第三个先去分母,再移项,最后化系数为1.
总结一下方法:含分母的,先去分母。包括两种去法:乘以数字和乘以含X得表达式。然后就是移项,合并同类项,x系数化为1。当然去分母最关键。
希望你会了
‘叁’ 方程怎么计算
第一种方法:应用等式的基本性质,使等式左边只剩下未知数,如 x+12=43 解:x+12-12=43-12 x=31 另一个方法,应用运算规律,如被减数-差=减数,积除以因数=另一个因数,被除数除以商=除数等。例子:11y=44 y=44除以4 y=4
‘肆’ 小学解方程的方法与技巧
小学解方程的方法与技巧如下:
一、利用方程式的特性,求解一个方程式。
三.根据加法、减法、乘法、除法等项间的关系,求出方程组。
1、根据加法中各个部件的关系,求出一个等式。
2、根据减法中各个部件的关系,求出一个方程式,减去时,速度减去=差值+减去。
‘伍’ 方程计算有什么方法
方程计算有估算法,应用等式的性质进行解方程,合并同类项,移项。使方程左右两边相等的未知数的值,叫做方程的解。求方程的解的过程叫做解方程。必须含有未知数等式的等式才叫方程。等式不一定是方程,方程一定是等式。
方程的含义概况
方程是指含有未知数的等式。是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。求方程的解的过程称为“解方程”。
通过方程求解可以免去逆向思考的不易,直接正向列出含有欲求解的量的等式即可。方程具有多种形式,如一元一次方程、二元一次方程、一元二次方程等等,还可组成方程组求解多个未知数。
‘陆’ 求所有初中解方程的的方法,越详细越好。不管哪种方程都要。马上中考了
一元一次方程和分式方程
解方程的方法:1.第一步一般是去括号了 如果没有括号转入第二部
2.第二步是乘以公分母 目的就是约去分母
3.第三步是移向 合并
4.第四步是得出结果
5,注意验根,特别分式方程
解二元一次方程组和三元一次方程组吧., 思路是消元,根据方程的特点来确定用代人消元还是加减消元.
如果一个方程中某一未知数的系数为1,常用代人消元法,也可用加减消元法;如果两个方程中同一未知数的系数相等,或互为相反数,或是整倍数关系,当然用加减消元法了.
解一元二次方程的基本思想方法:1、直接开平方法: 直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的方程,其解为x=m± .
2.配方法:用配方法解方程ax2+bx+c=0 (a≠0)
先将常数c移到方程右边:ax2+bx=-c
将二次项系数化为1:x2+x=-
方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2
方程左边成为一个完全平方式:(x+ )2=
当b2-4ac≥0时,x+ =±
∴x=(这就是求根公式)
3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项 系数a, b, c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。
4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。
高次方程主要分解因式法,
高次方程组用代入消元思想,
分解因式方法:先提公因式,再考虑公式,十字相乘,求根法,主要在于观察和积累经验。那里不会喊我。
‘柒’ 方程的计算方法
1、有分母先去分母。
2、有括号就去括号。
3、需要移项就进行移项。
4、合并同类项。
5、系数化为1求得未知数的值。
6、开头要写“解”。
例如:
3+x=18
解:x=18-3
x=15
使方程左右两边相等的未知数的值,叫做方程的解。求方程的解的过程叫做解方程。必须含有未知数等式的等式才叫方程。等式不一定是方程,方程一定是等式。
(7)补充方程的计算方法扩展阅读:
一、解方程方法
1、估算法:刚学解方程时的入门方法。直接估计方程的解,然后代入原方程验证。
2、应用等式的性质进行解方程。
3、合并同类项:使方程变形为单项式。
4、移项:将含未知数的项移到左边,常数项移到右边。
例如:3+x=18
解:x=18-3
x=15
5、去括号:运用去括号法则,将方程中的括号去掉。
4x+2(79-x)=192
解: 4x+158-2x=192
4x-2x+158=192
2x+158=192
2x=192-158
x=17
6、公式法:有一些方程,已经研究出解的一般形式,成为固定的公式,可以直接利用公式。可解的多元高次的方程一般都有公式可循。
二、相关概念
1、含有未知数的等式叫方程,也可以说是含有未知数的等式是方程。
2、使等式成立的未知数的值,称为方程的解,或方程的根。
3、解方程就是求出方程中所有未知数的值的过程。
4、方程一定是等式,等式不一定是方程。不含未知数的等式不是方程。
5、验证:一般解方程之后,需要进行验证。验证就是将解得的未知数的值代入原方程,看看方程两边是否相等。如果相等,那么所求得的值就是方程的解。
6、注意事项:写“解”字,等号对齐,检验。
‘捌’ 方程公式小学
方程公式大全小学
方程公式大全小学,数学是一门我们从小酒开始学的主学课程,学好数学也能对我们的生活中有帮助,因为可以套用很多的公式解决问题,下面是方程公式大全小学的内容。
1、用字母表运算定律。
加法交换律: a+b=b+a 加法结合律: a+b+c=a+(b+c)
乘法交换律: a×b=b×a 乘法结合律:a×b×c=a×(b×c)
乘法分配律: (a±b)×c=a×c±b×c
2、用字母表示计算公式。
长方形的周长公式: c=(a+b)×2 长方形的面积公式: s=ab
正方形的周长公式: c=4a 正方形的面积公式: s=a×a
3、 读作:x的平方,表示:两个x相乘。
2x表示:两个x相加,或者是2乘x。
4、含有未知数的等式称为方程。
使方程左右两边相等的未知数的值叫做方程的解。
求方程的解的过程叫做解方程。
5、把下面的数量关系补充完整。
路程=(速度)×(时间) 速度=(路程)÷(时间) 时间=(路程)÷(速度)
总价=(单价)×(数量) 单价=(总价)÷(数量) 数量=(总价)÷(单价)
总产量=(单产量)×(数量) 单产量=(总产量)÷(数量)
数量=(总产量)÷(单价 )
工作总量=(工作效率)×(工作时间)
工作效率=(工作总量)÷(工作时间)
工作时间=(工作总量)÷(工作效率)
大数-小数=相差数 大数-相差数=小数 小数+相差数=大数
一倍量×倍数=几倍量 几倍量÷倍数=一倍量
几倍量÷一倍量=倍数
被减数=减数+差 减数=被减数-差 加数=和-另一个加数
被除数=除数×商 除数=被除数÷商 因数=积÷另一个因数
长度单位换算
1千米=1000米
1米=10分米
1分米=10厘米
1米=100厘米
1厘米=10毫米
面积单位换算
1平方千米=100公顷
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
体(容)积单位换算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量单位换算
1吨=1000千克
1千克=1000克
1千克=1公斤
人民币单位换算
1元=10角
1角=10分
1元=100分
时间单位换算
1世纪=100年
1年=12月=365天平年
1年=12月=366天闰年
大月(31天)有:135781012月
小月(30天)的有:46911月
平年2月28天,闰年2月29天
平年全年365天,闰年全年366天
1日=24小时
1时=60分
1分=60秒
1时=3600秒
几何形体周长面积体积计算公式
1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽 S=ab
4、正方形的面积=边长×边长 S=a.a=a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2d=2r半径=直径÷2 r=d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd=2πr
10、圆的面积=圆周率×半径×半径
小学数学常用公式大全(数量关系计算公式)
1、单价×数量=总价
2、单产量×数量=总产量
3、速度×时间=路程
4、工效×时间=工作总量
5、
加数+加数=和
一个加数=和-另一个加数
被减数-减数=差
减数=被减数-差
被减数=减数+差
因数×因数=积
一个因数=积÷另一个因数
被除数÷除数=商
除数=被除数÷商
被除数=商×除数
有余数的除法:被除数=商×除数+余数
一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)
6、1公里=1千米
7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
9、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y = k( k一定)或k / x = y
百分数:表示一个数是另一个数的百分之几的.数,叫做百分数。百分数也叫做百分率或百分比。
13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
15、要学会把小数化成分数和把分数化成小数的化发。
16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)
17、互质数:公约数只有1的两个数,叫做互质数。
18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)
21、最简分数:分子、分母是互质数的分数,叫做最简分数。
分数计算到最后,得数必须化成最简分数。
个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。
22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。
23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414……
32、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如3. 141592654
33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……
34、什么叫代数? 代数就是用字母代替数。
35、什么叫代数式?用字母表示的式子叫做代数式。如:3x =ab+c
算术方面
1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数 分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5
6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
10、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
11、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
12、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
13、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
14、分数除以整数(0除外),等于分数乘以这个整数的倒数。
15、真分数:分子比分母小的分数叫做真分数。
16、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
17、带分数:把假分数写成整数和真分数的形式,叫做带分数。
18、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
19、一个数除以分数,等于这个数乘以分数的倒数。
20、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
‘玖’ 简单解方程计算。。。。帮我补充完整。。简单的哦!要过程。。谢谢
x²+10²=(x+2)²
x²+100=x²+4x+4
-4x=-96
x=24