导航:首页 > 计算方法 > 脆弱性计算方法

脆弱性计算方法

发布时间:2022-10-16 00:07:39

⑴ 环境脆弱性评价方法

基于对环境脆弱性内涵的界定,相关学者先后构建了环境脆弱性评价指标体系。总的来说,当前所建的环境脆弱性评价指标体系大致可分为两大类:单一类型区域的指标体系和综合性指标体系[13]。单一类型区域的指标体系通常是针对特定地理背景而建立的,结构简单,针对性强,具有区域性特点,能够根据区域特点确定导致区域环境脆弱的关键因子。综合性指标体系既考虑环境系统内在功能与结构的特点,又考虑环境系统与外界之间的联系,选取的指标比较全面,能够反映环境脆弱性的自然状况、社会发展状况、经济发展状况等方面。现有综合性评价指标体系可概括以下3种类型:成因及结果表现指标体系,在体现导致环境脆弱性主要因素的同时,其结果表现指标可以修正成因指标之间的地区性差异,使评价结果更具有地区间的可比性;“压力—状态—响应”指标体系,采用压力与状态指标描述人类活动对环境造成的压力以及在这种压力下资源与环境的质量状况和社会经济状况采用响应指标描述社会各个层次对造成环境脆弱压力的响应;多系统评价指标体系,运用系统论的观点分析环境系统及其子系统的特点,综合水资源、土地资源、生物资源、气候资源、社会经济等子系统脆弱因子,筛选指标,确定指标体系,能够全面地反映出区域环境的脆弱性。

李鹤等归纳和分析了目前脆弱性评价研究中运用的主要方法。根据脆弱评价的思路将脆弱性评价方法分为5类:综合指数法、脆弱性函数模型评价法、模糊物元评价法和危险度分析[14]。综合指数法是从脆弱性表现特征、发生原因等方面建立评价指标体系,利用数学方法综合成脆弱性指数,表示评价单元的脆弱性程度,是目前脆弱性评价中较常用的一种方法。其特点是简单、容易操作。脆弱性函数模型评价法基于对脆弱性的理解,首先对脆弱性的各构成要素进行定量评价,然后从脆弱性构成要素之间的相互作用关系出发,建立脆弱性评价模型。该方法与脆弱性内涵对应较强,能够体现脆弱性构成要素之间的相互作用关系,但目前关于脆弱性的概念、构成要素及其相互作用关系尚无统一的认识,并且脆弱性构成要素的定量表达较困难,使得该评价方法进展较为缓慢。模糊物元评价法是通过计算各研究区域与一个选定参照状态(脆弱性最高或最低)的相似程度来判别各研究区域的相对脆弱程度。该方法可以充分利用原始变量的信息,缺点在于对参照单元的界定缺乏科学合理的方法,评价结果对参照单元选取标准的变化十分敏感,并且评价结果反映出的信息量较少,只能反映各研究区域脆弱性的相对大小,难以反映脆弱性空间差异的决定因素及脆弱性特征等方面的信息。危险度分析方法计算研究单元各变量现状矢量值与自然状态下各变量矢量值之间的欧氏距离,认为距离越大系统越脆弱,越容易使系统的结构和功能发生彻底的改变。该方法多用于生态环境脆弱性评价,反映系统偏离自然状态的程度和研究单元的生态危险程度。不足之处是忽视了人类活动对生态环境改善的促进作用以及自然状态的不确定性,没有确定的脆弱性阈值。

随着GIS、融合技术及非线性方法等新方法的引入,环境脆弱性评价将可能出现新的方法。借助GIS技术,可以实现在同一个平台下表征出多种途径和探测手段能够获取的定性和非定性数据,利用空间叠加分析的强大功能提取出有用信息,阐述各种数据之间的相互关系,从而可以揭示自然环境要素间内在联系及演变规律。GIS技术与各种数学模型的结合将是环境脆弱性评价研究的一个重要发展方向。

从以上论述可以看出,关于地质环境脆弱性的研究尚不多见。近年来,有学者先后对地质环境对社会经济发展的影响做了一些探索,提出了地质环境生态适宜性评价指标体系、农业地质环境质量评价指标、区域地质环境可持续利用评价体系、国土资源与地质环境健康指数等评价框架或方法[15~18]。总的看来,地质环境脆弱性的研究多偏重于定性评价,定量评价理论与方法尚处在探索阶段,距离应用还有很大差距。

⑵ 区域地质环境脆弱性评价方法

基于ArcGIS平台,将区域地壳稳定性、断裂带分布、海拔、地表起伏度、植被覆盖度、地表湿润指数、土壤可蚀性、土壤侵蚀强度和岩溶分布等9个脆弱性指标图层进行线性变换归一化处理,使结果落到[0,100]区间,得到各指标标准值图层;运用因子相关分析法,分析9个脆弱性指标间相关性;应用主成分分析法,将相关性显着的重复的要素删去多余,重新组合成一组新的互相无关的综合脆弱性要素;以主成分要素对应的方差贡献率作为权重,应用综合指数模型,完成地质环境脆弱性综合评价;在区位理论及空间统计的支持下进行分区,将全国划分为微度、轻微度、轻度、中度、重度和极度等六类脆弱区。

(一)归一化

归一化处理,线性变换转换函数如下:

生态文明视角下地质环境调查战略研究

式中:X为指标x的标准值;xmax为指标x样本数据的最大值;xmin为指标x样本数据的最小值。

(二)因子相关分析

在spatial analyst工具的多元分析中进行波段集统计,分析上述9个指标的相关方向和相关程度。皮氏积矩相关系数是衡量两个随机变量之间线性相关程度的指标。它由卡尔·皮尔森在1880年提出,现已广泛地应用于科学的各个领域。对于变量x、y,皮氏积矩相关系数为:

生态文明视角下地质环境调查战略研究

式中:rxy为皮氏积矩相关系数;

为变量x的均值;

为变量y的均值。如果两者呈正相关,r呈正值,r=1时为完全正相关;如两者呈负相关则r呈负值,而r=-1时为完全负相关。通常情况下,通过以下r的取值范围判断变量的相关强度:0.8~1.0极强相关;0.6~0.8强相关;0.4~0.6中等程度相关;0.2~0.4弱相关;0.0~0.2极弱相关或无相关。

(三)主成分分析

基于ArcGIS平台,在spatial analyst工具的多元分析中进行主成分分析。主成分分析工具用于将输入多元属性空间中的输入波段内的数据变换到相对于原始空间对轴进行旋转的新的多元属性空间。新空间中的轴(属性)互不相关。第一个主成分V1(第一个线性组合,即第一个综合指标)将具有最大的方差,Var(V1)越大,表示V1包含的信息越多;如果第一主成分不足以代表原来m个指标的信息,再考虑选取V2即选第二个线性组合,V1已有的信息就不需要再出现在V2中,用数学语言表达就是要求Cov(V1,V2)=0,则称V2为第二主成分,第二个主成分将具有未通过第一个主成分描述的第二大方差;依此类推,可以构造出其他主成分。

(四)综合指数模型

地质环境脆弱度采用下式计算

生态文明视角下地质环境调查战略研究

式中:V为区域地质环境脆弱度;Vi为采用主成分分析方法所获得的第i个综合变量;n为综合变量个数;m为一级指标个数;λ为主成分变量对应的特征值。

⑶ 水源地地下水固有脆弱性评价方法

4.2.1.1 评价指标体系

选取影响地下水固有脆弱性影响因素指标体系的原则是:指标具有代表性、系统性、简洁性、独立性、动态性、科学性、可操作性。

1)代表性:指标充分反映了研究区典型区域特征对地下水污染风险的影响。

2)系统性:地下水污染风险关系到地下水系统的各个方面。在构建评价指标体系时,应该全面系统地考虑地下水污染风险的各种影响因素,尽可能将这些因素的各个方面都纳入到评价指标体系中来,在保证评价指标没有重复意义基础上,保证其评价结果的可靠性。

3)独立性:系统的状态可以用多个指标来描述,但这些指标之间往往存在信息交叉,在构建指标体系过程中,应该在诸多交叉信息中,通过科学的剔除,选择具有代表性同时又相互相对独立性较强的指标参与评价过程,提高评价的准确性和科学性。

4)简洁性:影响地下水污染风险的各种潜在因素很多,要建立一个包含所有因素的庞大指标体系在实际应用中是很难实现的。一方面这些因素所包含的指标有一些很难取得,另一方面指标过多,它们之间的关系也错综复杂,并且它们之间还存在着协同和拮抗等作用。这就要求在进行地下水脆弱性评价时,应根据不同地区的情况具体问题具体分析,尽量找出影响地下水污染风险的主要因素,并且选取的指标不宜过多,否则会冲淡主要指标的作用。

5)动态性:不仅要考虑现状条件下影响地下水污染风险的因素,还要考虑地下水环境和地下水系统在自然或人类活动影响下发生变化情况时的影响因素。

6)科学性:指标体系应建立在一定的科学基础之上,体系中各指标概念的内涵和外延应明确,能够从各个侧面全面完整地反映和度量评价对象。

7)可操作性:指标的获取具有现实性,在我国现有统计制度存在或者通过实验和调研能够得到相应的数据资料(如统计年鉴、统计资料、抽样调查、典型调查或相应的内部资料等)。

4.2.1.2 地下水型水源地固有脆弱性评价指标体系

目前评价地下水脆弱性最常用的方法是DRASTIC模型。模型将地下水埋深D、净补给量R、含水层介质A、土壤带介质S、地形T、包气带介质I及水力传导系统C等7个水文地质参数组成评价指标体系。虽然DRASTIC模型可以较客观地评估不同地区的地下水本质脆弱性,但其前提是假设各地区的含水层都分别具有均一趋势。实际上由于各国各地区的地质、水文地质等条件不同,以及模型计算方法的缺陷,DRASTIC法存在一定的局限性,需要对模型进行一定的改进,使其具有更强的适用性,其中针对地表水域发育地区需要考虑河网的密度,而土地利用类型可以表征入渗污染物分布大致类型和状态,需要被引入到评价过程中,改进后的指标体系见表4.1所示。

(1)地下水埋深

地下水埋深即包气带厚度。包气带是污染物从地表进到含水层中的第一道屏障,包括土壤和土壤下方的包气带土层。土壤黏土矿物含量、有机质含量、含水量、土壤类型与分布、包气带介质、厚度、结构及区域分布特征等都是地下水脆弱性的影响因素。包气带厚度决定了污染物进入含水层所必经的路程长短,水位埋深越浅,污染物和包气带介质发生各种物理化学生物作用的机会和时间越少,因此,地下水脆弱性越高。

表4.1 地下水固有水脆弱性评价指标表

(2)垂向净补给量

垂向净补给量指单位面积内从地表垂直渗入地下水位的水量,是评价中最不容易确定的因素,补给水量不仅是污染物运移载体,而且对污染物起到一定的稀释作用。垂向净补给量对地下水脆弱性具有双重影响:当垂向净补给量大时,携带的污染物量多,同时污染物被稀释的可能性增大,所以这两种相反的作用和决定了垂向净补给量对地下水脆弱性的贡献。大部分研究中认为,研究区内的垂向净补给量没有大到可以产生稀释作用,所以一般采用简化的方法表示垂向净补给量对地下水脆弱性的影响,即垂向净补给量越大,污染物进入到地下水中的可能性越高,因此,地下水脆弱性越高。

垂向净补给量通常由降雨量、河流补给量、渠系渗流量、灌溉水和回灌水入渗量等各种补给源减去蒸散发量组成,这些物理量都存在着年内和年际变化,因此,垂向净补给量是随时间变化的物理量,地下水脆弱性也存在着动态变化。垂向净补给量可根据水均衡方程来估计,但结果精度不高。在降雨量占地下水补给量绝对优势的情况下,一般采用降雨补给入渗量代替垂向净补给量,用降雨量乘以降雨入渗系数获得降雨补给入渗量。

(3)地形坡度

地形坡度指地表面的倾斜程度,它可以控制污染物迁移或积累的过程。如果坡度较陡,污染物随降雨、灌溉水等载体而迁移,不易渗入地表以下,因此,地下水脆弱性较低;反之,则较高。

(4)土壤介质类型

土壤介质类型控制着渗透途径和渗流长度,并影响污染物衰减和与介质接触时间。颗粒结构越细,介质越密实,孔隙度越小,渗透性就越差,防护能力越强,地下水脆弱性越低。

(5)包气带介质黏性土层厚度

黏性土层相比于其他介质更容易对污染物进行截滞、转化或积累,降低了对地下水环境污染的可能性。包气带中黏土层对污染物进入地下水起到极大的截污与阻碍作用,黏土层越厚,污染物到达含水层的时间越长,污染物接受稀释、降解的机会就越大,防污性能越好,地下水脆弱性越低。

(6)含水层介质渗透系数

岩石的颗粒越大,或是存在与含水层有密切水力联系的断裂构造(节理和断层),则含水层具有较高的渗透性,地下水脆弱性越高。在松散含水层中,渗透性取决于岩石颗粒类型和细颗粒物质含量;在裂隙或岩溶含水层中,渗透性取决于断层面和层理面的原生空隙和次生空隙的数量。断裂带的性质、产状、宽度、富水性及导水性等是影响地下水脆弱性的主要因素。此外,含水层厚度也决定了含水层对污染物的稀释能力。含水层厚度越大,对污染物的稀释作用越强,地下水脆弱性越低。

(7)土地利用类型

土地利用类型是区分土地利用空间地域组成单元的过程。这种空间地域单元是土地利用的地域组合单位,表现人类对土地利用、改造的方式和成果,反映土地的利用形式和功能。地下水系统对流域土地利用具有强烈的响应。

土地利用类型既可以作为地下水脆弱性的影响因素,也可以作为地下水污染风险的影响因素,但影响意义不同。土地利用类型对地下水污染风险的影响主要体现在不同土地类型对应的污染源特征以及污染物进入地下水的途径不同。例如,耕地的农作物上施用的化肥和农药入渗污染地下水,耕地面积越大,植物耕种的密度越大,则施用的化肥和农药就越多,则地下水污染风险越高;在地表水体与地下水的水力联系密切之处,地表水体的污染容易通过连续入渗方式对地下水污染风险产生影响。土地利用类型作为地下水脆弱性的影响因素,并不将其作为体现污染源种类或负荷的表征,而是作为影响污染物在土壤或包气带中迁移转化规律的体现。不同土地利用类型下的包气带中污染物的垂直入渗、微生物作用及污染物的净化过程会有明显的不同。

(8)河网密度

河网密度为单位面积内河道总长度。水系密布性与DEM的分辨率直接有关,当分辨率较低时,某些小河道就无法表达出来,反之,当分辨率较高,则就能将细小的河道表达出来。在地表水体与地下水有密切水力联系地区,地表水也是地下水的一个重要补给来源。地表水系发达地区的地下水不仅接受地表水体下渗的补给,而且也受到河流侧向相互补排的影响。此外,包气带土层也受到河网切割侵蚀的影响。一般认为,河网稀疏区域的地下水脆弱性低;河网密集区域的地下水脆弱性高。

4.2.1.3 地下水固有脆弱性评价方法

地下水脆弱性的研究程度较高,评价方法较为成熟,目前国内外已有的评价方法主要有迭置指数法、过程模拟法、统计方法、模糊数学方法以及各种方法的综合等,具体信息见表4.2。

表4.2 地下水脆弱性评价的主要方法表

其中,迭置指数法是通过选取的评价参数的分指数进行迭加形成一个反映脆弱性程度的综合指数,包括指标、权重、值域和分级。它又分为水文地质背景参数法(HCS)和参数系统法,后者又包括矩阵系统(MS)、标定系统(RS)和计点系统模型(PCSM)。它是通过对选取指标进行等级划分和赋值以及赋予权重,然后进行加权求和得到一个反映程度的综合指数,并通过对综合指数进行等级划分表征评价对象一种方法。

根据建立的指标体系,对模型中每个指标都分成几个区段,每个区段赋予1~10的评分。然后根据每个指标对脆弱性影响大小赋予相应权重(5,4,3,2,1,5和3),最后通过加权求和下式得到地下水脆弱性指数,记为DI,值越高,地下水脆弱性越高,反之脆弱性越低。

DI=DRDW+RRRW+ARAW+SRSW+TRTW+IRIW+CRCW(4.1)

式中:下标R——指标值;

W——指标的权重。

其中各个评价指标的分级标准和评分表如下表4.3所示:

表4.3 地下水脆弱性DRASTIC评价指标的分级标准和评分表

国内研究者根据不同地区自然属性特征和污染物特征提出了3~11个不等的指标,采用不同的方法对权重加以优化,然后借助GIS技术或模糊数学方法进行地下水脆弱性分区。

⑷ 脆弱性评价除了层次分析法还有哪个比较简单

层次分析法优缺点
(一)优点
1. 系统性的分析方法
层次分析法把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具。系统的思想在于不割断各个因素对结果的影响,而层次分析法中每一层的权重设置最后都会直接或间接影响到结果,而且在每个层次中的每个因素对结果的影响程度都是量化的,非常清晰、明确。这种方法尤其可用于对无结构特性的系统评价以及多目标、多准则、多时期等的系统评价。
2. 简洁实用的决策方法
这种方法既不单纯追求高深数学,又不片面地注重行为、逻辑、推理,而是把定性方法与定量方法有机地结合起来,使复杂的系统分解,能将人们的思维过程数学化、系统化,便于人们接受,且能把多目标、多准则又难以全部量化处理的决策问题化为多层次单目标问题,通过两两比较确定同一层次元素相对上一层次元素的数量关系后,最后进行简单的数学运算。即使是具有中等文化程度的人也可了解层次分析的基本原理和掌握它的基本步骤,计算也经常简便,并且所得结果简单明确,容易为决策者了解和掌握。
3. 所需定量数据信息较少
层次分析法主要是从评价者对评价问题的本质、要素的理解出发,比一般的定量方法更讲求定性的分析和判断。由于层次分析法是一种模拟人们决策过程的思维方式的一种方法,层次分析法把判断各要素的相对重要性的步骤留给了大脑,只保留人脑对要素的印象,化为简单的权重进行计算。这种思想能处理许多用传统的最优化技术无法着手的实际问题。[1]
(二)缺点
1. 不能为决策提供新方案
层次分析法的作用是从备选方案中选择较优者。这个作用正好说明了层次分析法只能从原有方案中进行选取,而不能为决策者提供解决问题的新方案。这样,我们在应用层次分析法的时候,可能就会有这样一个情况,就是我们自身的创造能力不够,造成了我们尽管在我们想出来的众多方案里选了一个最好的出来,但其效果仍然不够企业所做出来的效果好。而对于大部分决策者来说,如果一种分析工具能替我分析出在我已知的方案里的最优者,然后指出已知方案的不足,又或者甚至再提出改进方案的话,这种分析工具才是比较完美的。但显然,层次分析法还没能做到这点。
2. 定量数据较少,定性成分多,不易令人信服
在如今对科学的方法的评价中,一般都认为一门科学需要比较严格的数学论证和完善的定量方法。但现实世界的问题和人脑考虑问题的过程很多时候并不是能简单地用数字来说明一切的。层次分析法是一种带有模拟人脑的决策方式的方法,因此必然带有较多的定性色彩。这样,当一个人应用层次分析法来做决策时,其他人就会说:为什么会是这样?能不能用数学方法来解释?如果不可以的话,你凭什么认为你的这个结果是对的?你说你在这个问题上认识比较深,但我也认为我的认识也比较深,可我和你的意见是不一致的,以我的观点做出来的结果也和你的不一致,这个时候该如何解决?
比如说,对于一件衣服,我认为评价的指标是舒适度、耐用度,这样的指标对于女士们来说,估计是比较难接受的,因为女士们对衣服的评价一般是美观度是最主要的,对耐用度的要求比较低,甚至可以忽略不计,因为一件便宜又好看的衣服,我就穿一次也值了,根本不考虑它是否耐穿我就买了。这样,对于一个我原本分析的‘购买衣服时的选择方法’的题目,充其量也就只是‘男士购买衣服的选择方法’了。也就是说,定性成分较多的时候,可能这个研究最后能解决的问题就比较少了。
对于上述这样一个问题,其实也是有办法解决的。如果说我的评价指标太少了,把美观度加进去,就能解决比较多问题了。指标还不够?我再加嘛!还不够?再加!还不够?!不会吧?你分析一个问题的时候考虑那么多指标,不觉得辛苦吗?大家都知道,对于一个问题,指标太多了,大家反而会更难确定方案了。这就引出了层次分析法的第三个不足之处。
3. 指标过多时数据统计量大,且权重难以确定
当我们希望能解决较普遍的问题时,指标的选取数量很可能也就随之增加。这就像系统结构理论里,我们要分析一般系统的结构,要搞清楚关系环,就要分析到基层次,而要分析到基层次上的相互关系时,我们要确定的关系就非常多了。指标的增加就意味着我们要构造层次更深、数量更多、规模更庞大的判断矩阵。那么我们就需要对许多的指标进行两两比较的工作。由于一般情况下我们对层次分析法的两两比较是用1至9来说明其相对重要性,如果有越来越多的指标,我们对每两个指标之间的重要程度的判断可能就出现困难了,甚至会对层次单排序和总排序的一致性产生影响,使一致性检验不能通过,也就是说,由于客观事物的复杂性或对事物认识的片面性,通过所构造的判断矩阵求出的特征向量(权值)不一定是合理的。不能通过,就需要调整,在指标数量多的时候这是个很痛苦的过程,因为根据人的思维定势,你觉得这个指标应该是比那个重要,那么就比较难调整过来,同时,也不容易发现指标的相对重要性的取值里到底是哪个有问题,哪个没问题。这就可能花了很多时间,仍然是不能通过一致性检验,而更糟糕的是根本不知道哪里出现了问题。也就是说,层次分析法里面没有办法指出我们的判断矩阵里哪个元素出了问题。
4. 特征值和特征向量的精确求法比较复杂
在求判断矩阵的特征值和特征向量时,所用的方法和我们多元统计所用的方法是一样的。在二阶、三阶的时候,我们还比较容易处理,但随着指标的增加,阶数也随之增加,在计算上也变得越来越困难。不过幸运的是这个缺点比较好解决,我们有三种比较常用的近似计算方法。第一种就是和法,第二种是幂法,还有一种常用方法是根法。

模糊综合评价法优缺点
1、模糊综合评价法的优点
模糊评价通过精确的数字手段处理模糊的评价对象,能对蕴藏信息呈现模糊性的资料作出比较科学、合理、贴近实际的量化评价;
评价结果是一个矢量,而不是一个点值,包含的信息比较丰富,既可以比较准确的刻画被评价对象,又可以进一步加工,得到参考信息。
2、模糊综合评价法的缺点
计算复杂,对指标权重矢量的确定主观性较强;
当指标集U较大,即指标集个数凡较大时,在权矢量和为1的条件约束下,相对隶属度权系数往往偏小,权矢量与模糊矩阵R不匹配,结果会出现超模糊现象,分辨率很差,无法区分谁的隶属度更高,甚至造成评判失败,此时可用分层模糊评估法加以改进

⑸ 南昌市地下水脆弱性评价

张永忠 马振兴 杨永革 刘细元 陶木金 吕少俊 秦岩 王道英

(江西省地质调查研究院,向塘330201)

摘要:通过采用DRpASTIC评价模型对南昌市地下水脆弱性进行了评价,得出结论:南昌市赣江、抚河沿岸砂滩脆弱性高,防污性能极差;红谷滩新区、莲塘及八一桥的赣江分支地区,脆弱性较高,防污性能差;朝阳洲、扬子洲的河间地块,脆弱性中等,防污性能中等;凤凰洲、蒋巷及西北部冲沟地带,脆弱性较低,防污性能较好;老抚河以东地区和北西部岗间地带脆弱性低,防污性能好。对形成地下水脆弱性高-较高区的主要因素进行了阐述和分析。根据南昌市地下水脆弱性分区特点及污染源特征,对南昌市地下水污染防治提出了建议和对策。

关键词:地下水;脆弱性评价;南昌市

地下水具有水质好,水温稳定,不易受污染等特点,因此,它作为城市供水水源之一,显得越来越重要,尤其是在城市面临水质型缺水和季节性缺水时,它的作用显得尤为重要,然而,由于工业三废及生活废弃物的大量排放、农业区化肥和农药的大量使用,致使部分区域地下水受到不同程度的污染。有关资料显示:在南昌市老城区和人口稠密地区,其污染源主要为生活废水、生活垃圾和粪便污染物,污染物质主要是“三氮”有机污染和各种病毒细菌。区内第四系松散岩类孔隙水在南昌乳品厂、南昌农药厂和化工原料厂、外洲水文站一带已有不同程度的污染,主要污染因子有pH值、 Zn2+、Fe、Mn2+。红层地下水受污染地段主要分布在罗家集和外洲水文站,污染因子为 Fe、Mn2+、Cl、pH值、总硬度和溶解固形物,污染程度为中度-轻度污染。因此,开展南昌市城市地下水脆弱性进行评价,并在分析评价结果的基础上,识别地下水污染的潜在危险,可为科学制定地下水污染防治方案和有效实现地下水资源的可持续利用提供重要依据,具有重要的现实意义。

1 城市自然地理及环境地质背景

1.1 自然地理及研究区范围

南昌是江西的省会城市,地处赣(江)抚(河)下游冲积平原,北临我国最大的淡水湖-鄱阳湖。地势总体西北高、南东低,依次发育低山丘陵、岗地、平原,呈现层状地貌特征。以赣江为界,赣江西北部为构造剥蚀低山丘陵、岗地,赣江以东为河流侵蚀堆积平原,河湖港汊密布,辫状水系发育。本次研究区范围为南昌市城市规划区[1]范围:东起麻丘镇,西至梅岭;北起昌北机场,南至银三角(南昌县以南3km)。东经:115°46′27″~116°06′04″;北纬:28°30′48″~28°51′54″。总面积1248.0km2

1.2 地层岩石构造特征

研究区地层有前震旦系、白垩系上统、古近系和第四系;出露有晋宁期、喜山期岩浆岩。南昌地处扬子地块与华南地块接合带北侧、扬子地块的南缘,地质构造复杂,断裂及其裂陷盆地均很发育。褶皱构造:区内基岩仅出露于赣江以西地区。除由前震旦系千枚岩组成一系列北东东至北东走向的次级紧密线状同斜褶皱外,白垩系上统—古近系,褶皱宽缓,呈近东西走向。区内断裂甚为发育,以北东、北北东,北西及北北西四组断裂为主,次为北东东和东西断裂。

1.3 含水岩组划分

根据含水岩(层)组的岩性特征,组合关系,贮水空间的形态及水力联系等划分为4个含水层:(1)第四系松散岩类孔隙含水层:第四系孔隙含水层由全新统、上更新统和中更新统冲积的砂、砂砾石层组成,三者水力联系密切,构成统一的含水层,水量丰富,补给来源有河水侧向补给,大气降水垂向补给和红层地下水越流补给。(2)古近系、白垩系“红层”溶隙裂隙含水层:以大气降水补给为主,富水性中等-弱。(3)前震旦系变质岩裂隙含水层组:地下水赋存于风化裂隙中,地下水以大气降水补给为主,富水性弱。(4)岩浆岩裂隙含水层:地下水以大气降水补给为主,富水性弱。

2 南昌市地下水脆弱性评价[2]

2.1 评价方法及评价因子的选取

根据南昌市的自然地理及环境地质背景条件等具体情况,我们采用DRpASTIC评价模型。选取地下水埋深(D)、降雨入渗补给量(Rp)、含水层介质(A)、土壤介质(S)、地形坡度(T)、非饱和带介质(I)、含水层渗透系数(C)7个参数作为南昌市地下水脆弱性的评价因子。

2.2 地下水脆弱性评价因子评分

(1)地下水埋深:地下水埋深决定着地表污染物到达含水层之前所经历的各种水文地球化学过程,并且提供了污染物与大气中的氧接触致使其氧化的最大机会。通常,地下水位埋深越大,地表污染物达到含水层所需的时间越长,污染物在途中被稀释的机会越大,污染物进入地下水的可能性就越小,

含水层被污染的程度也就越小。因此,根据地下水埋深对地下水污染程度的影响,结合地下水埋深,给出埋深范围及评分(表1)。

表1 地下水埋深评分表

华东地区地质调查成果论文集:1999~2005

,其实测含量为25mg/L,为国家地下水质量Ⅲ类标准的1.25倍。红谷滩王家一带超标组分为NH4+,其实测含量为0.7mg/L,为国家地下水质量Ⅲ类标准的3.5倍。另外,莲塘(小兰工业园区)地下水有机污染分析结果显示:地下水有机氯农药中δ六六六为23.87ng/L,P,P′-DDT为108.3ng/L;多环芳烃检出率为56%,综合污染指数为0.9,达到警戒线。地下水污染在此带已经产生了一定的危害,如果不及时防治,它将产生更进一步的不良后果,如:这些受污染的区域都分布在赣江两岸,且都在南昌市城区的上游位置,它们均分布着上、中更新统或全新统冲积砂砾石层,渗透性好,与赣江水力联系密切,一般情况下由于地下水水位高于赣江水位,地下水排泄于赣江,这时,受污染的地下水将污染物不断地带进赣江水中,使赣江水体受到污染,受污染的赣江水体向南昌市城区中下游流去,污染了所有的取水口(工业和生活供水水源),造成不可估量的损失。以上表明,对地下水污染防治,已显得十分迫切和需要,尤其是对那些地下水脆弱性较高的区域,更需要采取有效的措施,控制地下水污染的进一步发展和蔓延。

4 南昌市地下水污染防治建议

如前所述,由于南昌市部分区域防污性能差,已经造成很多地方地下水严重污染,甚至有可能进一步污染赣江水源。为了防止地下水污染的进一步发展和蔓延,对地下水进行污染防治已成了当务之急。据调查资料,南昌市地下水污染源大致可归为4种:工业三废排放的点源污染;农业化肥及农药的施用,污水灌溉的非点源污染;生活废弃物排放的非点源污染;被污染地表水体的侧向渗透补给。根据南昌市地下水脆弱性分区特点及污染源特征,建议建立以下地下水卫生防护带,以防止含水层污染。

(1)一级防护带:主要分布于赣江、抚河沿岸漫滩,此带对应于脆弱性高区,其防污性能极差,含水介质渗透性极强,与赣江水力联系密切,其地下水一旦遭受污染,还会进一步将污染物带入赣江水源。所以此带为严禁活动带,应禁止在此带的一切农业种植活动,严禁生活垃圾及生活污水的排放,总之,应禁止一切可能引起地下水污染的活动。

(2)二级防护带:分布于红谷滩新区、青云谱、莲塘一带,此带对应于脆弱性较高区,其防污性能较差,含水介质渗透性较强,一般情况下地下水排泄于赣江,2004年通过取水样查证,其部分区域地下水已经遭受污染,有可能还会进一步将污染物带入赣江水源。此带已有一些污染企业,如莲塘小兰工业园一带的汇仁制药厂及一些化工厂已使地下水产生了污染,对这些污染企业应进行治理,治理不了的应关、停、并、转、迁,应尽量避免修建各种大型污染企业,积极发展技术、资金密集型企业,逐步转向以第三产业和高新技术为主导的产业结构,由资源型转向效益型。另外也可建设居民区。

(3)三级防护带:主要分布于朝阳洲、扬子洲地带农业地区,其对应于脆弱性中等区,防污性能一般。建议在此带建立居民生活区、娱乐场所,以及轻业区,不得兴建有污染的企业,发展生态农业,集约经营,提倡科学使用化肥、农药,提高使用效率,减少面源污染,提倡多用有机肥,特别应该杜绝污水灌溉。消灭污染源,对污染物进行科学处理,确保所有污染物达标排放。

(4)四级防护带:位于老抚河以东广大地区,北西部的岗间冲沟、八一桥北端—凤凰洲、赣江南支蒋巷镇地区。此带对应于脆弱性低~较低区,建议此带建立农业活动区、重工业区、制造业及食品工业区。该带的东部区域为地下水资源主要分布区。因此,应进行保护,消灭污染源,不得随意倾到工业废渣及生活垃圾,禁止污水灌溉。

5 结论

(1)对南昌市地下水脆弱性进行了评价,得出结论:南昌市赣江、抚河沿岸砂滩脆弱性高,防污性能极差;红谷滩新区、莲塘及八一桥的赣江分支地区,脆弱性较高,防污性能差;朝阳洲、扬子洲的河间地块,脆弱性中等,防污性能中等;凤凰洲、蒋巷及西北部冲沟地带,脆弱性较低,防污性能较好;老抚河以东地区和北西部岗间地带脆弱性低,防污性能好。为南昌市地下水污染防治工作提供了科学的依据。

(2)对形成地下水脆弱性高-较高区的主要因素进行了详细阐述和分析。

(3)根据南昌市地下水脆弱性分区特点及污染源特征,对南昌市地下水污染防治工作提出了建议和对策。

参考文献

[1]南昌市城市规划设计研究总院.南昌市2002~2005年城市总体规划

[2]地矿部水文地质工程地质研究所选编.地下水资源评价理论与方法的研究.北京:地质出版社,1982

Groundwater Vulnerability Assessment in Nanchang

Zhang Yongzhong, Ma Zhenxing, Yang Yongge, Liu Xiyuan, Tao Mujin,Lu Shaojun, Qin Yan, Wang Daoying

(Jiangxi Institute of Geological Survey, Xiangtang 330201)

Abstract: DRpASTIC assessment model is put forward to assess the groundwater vulnerability in Nanchang city. The result shows that the area of Ganjiang River and along the sand beach Fu River in Nanchang City is high in the groundwater vulnerability and very poor in antipollution ; that of Honggutan New Zone, Liantang and the regional branch of the Ganjiang River of Bayi Bridge, the higher vulnerability,antipollution worse; that of Chaoyang Island, interfluve block of the Yangtze Island, Medium vulnerability, antipollution Medium; that of Fenghuang Island, Jiangxiang and gully zone in Northwest, the lower vulnerability, antipollution better; that of the east area and the interridge of north-western areas in the former Fu River, the low vulnerability, antipollution good。 The paper expounds and analyzes the main factors which forms high-higher area of the Groundwater vulnerability. According to pollution source features and characteristics of groundwater vulnerability district of Nanchang City, the article puts forward proposals and measures of groundwater pollution prevention.

Key words: Groundwater; Vulnerability assessment; Nanchang

⑹ 地质环境脆弱性评价指标

对于脆弱性,生态学、环境学、灾害学等不同的学科具有不尽相同的含义[11]。这里所指的地质环境脆弱性,其含义是地质环境本身所固有的、先天的、易于对人类经济社会产生灾害或负面影响的程度,即地质环境系统及其组成要素在外界条件作用下易于产生地质环境问题或地质灾害的程度。人类活动、气候变化、地表植被等因素虽然对地质环境脆弱性有不同程度的影响,但是这些因素属于地质环境的外界条件,并非地质环境本身所固有。所以,影响地质环境脆弱性的主要因素包括地质构造、地形地貌、地表组成物质等。从区域尺度来看,决定区域地质环境脆弱性的关键因素是地质构造和地形地貌。定量刻画地质构造和地形地貌的指标分别为区域地壳活跃度和地表起伏度。

(一)区域地壳活跃度

区域地壳活跃度用于表征区域地壳运动的现今活动情况与活跃程度,区域地壳稳定性的负面表述。中国地质科学院地质力学研究所依据区域地质单元性状、构造活动、垂直地形变、地壳厚度异常及布格重力异常、地震震级、地震烈度和地质灾害等指标,对中国区域地壳稳定性按照100Km×100Km的网格进行了分单元评价[12]。按照评价指标,各个单元的地壳稳定性划分为4个等级:稳定、基本稳定、次不稳定、不稳定。结果表明,中国国土面积的24%属于稳定区,56%属于基本稳定区,17%属于次不稳定区,3%属于不稳定区。

以上述区域地壳稳定性评价结果为基础,区域地壳活跃度采用下式计算:

中国地质环境变化与对策研究

式中:S1———不稳定区占地区总面积的百分比;

S2———次不稳定区占地区总面积的百分比;

p1、p2———权重;

G———区域地壳活跃度。

(二)地表起伏度

地表的起伏,影响着地表物质的侵蚀、搬运、堆积等过程,在很大程度上决定了滑坡、崩塌、泥石流、水土流失等地质灾害的易发程度。它从宏观上决定了一个地区地质环境的脆弱程度。衡量地形地貌对地质环境脆弱度的影响,可采用地表起伏度这一指标来表达。其计算公式为

中国地质环境变化与对策研究

式中:max(h)———地区的最高海拔高度(m);

min(h)———地区的最低海拔高度(m);

max(H)———全国的最高海拔高度(m);

min(H)———全国的最低海拔高度(m);

P(A)———地区平地所占的面积(Km2);

A———地区的陆地总面积(Km2);

RDSL———地表起伏度。

采用比较简便的加权线性累积法计算区域地质环境脆弱度。总体上,可以认为区域地壳活跃度和地表起伏度对地质环境脆弱性的贡献是相同的,在计算区域地质环境脆弱度时这两个指标的权重均为1/2。由于区域地壳活跃度、地表起伏度的地区差异很大,选用标准差形式对数据进行规范化处理。

⑺  生态环境脆弱性评价

1.评价指标与权重的选取

(1)评价因子选取

将生态环境因子划分为三大类,即生态系统与生境现状、人类生存安全度和生态经济。生态系统与生境现状包括气象条件,水资源条件,地貌条件,植被与生境条件等4项工级指标、12项Ⅱ级指标与5项Ⅲ级指标。人类生存安全度包括自然灾害,环境污染与土地负荷3项Ⅰ级指标、9项Ⅱ级指标和2项Ⅲ级指标。生态经济包括土地生产力和生态经济2项工级指标、10项Ⅱ级指标、5项Ⅲ级指标。共计有9项I级指标、31项Ⅱ级指标、12项Ⅲ级指标(Ⅲ级指标不参与最终计算,只帮助确定Ⅱ级指标的取值)。

(2)评价指标选取

要将这些不同量纲的指标进行评价须对其进行初值化与标准化。初值化是将指标值与国家评价指标体系或全国自然—社会—经济体系现状对比,赋予指标值1~10的分值。一般视5~6为正常值(多为豫中平原取值),分值愈大意味着该指标对生态质量的正面影响愈大,分值愈少意味着该指标对生态质量的负面影响愈大。

(3)评价权重选取

聘请15位相关专业的专家对31项Ⅱ级指标、9项Ⅰ级指标运用层次分析法(AHP)求权值。先确定在Ⅱ级指标、Ⅰ级指标内相对权值,再确定I级指标间相对权值。

2.生态环境质量综合评判

(1)生态因子的取值单位、初值化标准和权值及生态环境脆弱性评价计算

年均降雨量初值取1~10分;≤50 mm/a为1;>2000 mm/a为10;中值(5.5)取600~650 mm/a。

≥10℃年积温初值取1~10分;≤1000℃为1;>10000℃为10;中值(5.5)取4700~4800℃。

干燥度初值取1~9分;K≥16为1;K<0.8为9;中值(5.5)取1.1~1.4。

径流深初值取1~10分;≤10 mm/a为1;>1000 mm/a为10;中值(5.5)取150mm/a。

浅层地下水富水性初值取1~10分,淡水≤1 t/(h·m)为3,≥50 t/h·m为10。

灌溉面积比初值取1~10分;≤10%为1;100%为10;中值(5.5)取50%。

地貌类型初值5~8;亚高山(≥1800 m,多为自然保护区);低山与丘陵(坡度平均<25°,多为宜林宜草区)和倾斜平原(100~200 m,多为良好农耕区)取8;中山(≥1000 m,平均坡度≥250,但植被多较好)取7;平原取6;洪涝威胁平原与缺水劣地台

初值取2~9;坡度分≥550、55°、35°、25°、15°、6°、2°、0.004、坡度与切割度0.0002、0.0001和<0.0001共11个等级,以悬崖急陡坡和低洼地为差,取值2~4;以6~0.0002为佳,取值7~9;≥2°的坡地切割严重区分值比同等坡度降1。

地震烈度烈度区划≥X度取3分;<V度取9分;余值内插。

旱涝频度 轻旱<50%,中旱50%~60%,重旱60%~70%,严重干旱≥70%;轻涝<30%,中涝30%~50%,重涝50%~70%,严重涝≥70%。严重旱涝区(豫北)取3分;重旱严重涝区(豫东)取4分;严重旱轻涝(豫北山地)、中旱严重涝(淮北)取5分;重旱轻涝(豫西北浅山区)和中旱重涝区(南阳盆地)取6分;中旱中涝区(大别山北坡)取7;轻旱轻涝区(伏牛山、大别山腹地)取8分。

洪水威胁程度黄淮江海平原洪水威胁区为1~4分;平原中微高地取5分;倾斜平原取5~7分;山区谷地取3~5分;坡地取5~7分。

其他自然灾害主要指地质灾害。崩塌、滑坡、泥石流、地面沉陷、矿井瓦斯与突水等灾害高发区取3~4分;轻发区取5~6分;无发生区取8分。地取5。

水域与湿地面积比(r)以≤1%为1分;100%为10分;中值(5.5)取面积比为20%~25%。

森林覆盖率(β)以≤2%为1分;≥80%者为10分;中值(5.5)的覆盖率为10%~12%。

建设用地面积比(α)以≥20%为1分;<2%为10分;中值(5.5)取12%。

土壤侵蚀与土地退化 以毁坏型剧烈侵蚀(≥15000 t/(a.km2)为1分;抗蚀年限≥1000 a,侵蚀量<500 t/(a·km2)为10分;余者内插。参照年沙暴日数,土地沙漠化类型和盐渍化程度酌情扣分。

土壤母质以花岗岩、壤土类为佳,取8分;其他火成岩、变质岩、黄土取7分;黏性与沙性土分别取6与5分;碳酸盐岩、碎屑岩、泥砾与沙砾取5~4分。

土壤有机质有机质含量≤0.6%为1分;>6%为10分;中值(5.5)取2%~2.5%。

土壤速效 N、P、K含量 碱解氮150×10-6~30×10-6取8~3分;速效磷40×10-6~3×10-6取8~3分;速效钾200×10-6~50×10-6取8~4分。

单位土地第一产业增加值每平方公里增加值200万~5万元,取值8~2分;中值(5)取80万~100万元。

人口密度 密度1000~100人/km2,取值1~10分;中值(5.5)取500人/km2

人均耕地 人均耕地0.333 hm2(5亩)至0.0667 hm2(1亩)取值10~1分;中值(5.5)取0.12 hm2(1.8亩)。

排污强度万元GDP排污水数,≥100 t/万元为1分;零排放为10分;中值(5.5)取50t万/元。

地表水质等级超V类水取1分;Ⅲ类水取6分;工类水取10分;余者内插。

农药化肥施用强度 化肥≤0.05 t/hm2.a为10分;>1.4 t/hm2.a为1分;余者内插。农药零施用为10分。≥0.04 t/hm2.a为1分,余者内插。

非农业人口比例无农业人口为8分;农业人口100%为5分;余者内插。

第一产业GDP贡献值GDP贡献率为100%取8分;无取5分;余者内插。

农民人均纯收入人均纯收入>3000元取8分;<1000元取1分;余者内插。

义务教育普及率达100%者取10分;<70%取1分;余者内插。

医疗条件万人医生(或病床)≥60个取10分;无医生(病床)取1分;余者内插。

农林水与文教卫生投入强度 综合投入>1000元/人年·公顷取10分;≤20元/人年·公顷者取1分;余者内插。

(2)评价地域的综合得分

取得各指标标准化值与权值后即可用公式法计算其最终得分值。分值介于0~1之间,分值愈大其生态环境状况愈好,分值愈少其生态环境状况愈差。再用1减去指标综合分值即为该地域的生态环境脆弱性指数 G。该系数的含义为数值愈大生态环境脆弱性越强,具景观衰落、生态质量恶化趋势;数值愈小生态环境脆弱性越低,生态系统处于良性循环状况(表12.1.1)。

表12.1.1河南省生态环境脆弱性评价计算表

G值的求法为

续表

遥感·河南省国土资源综合调查与评价

应说明的是,因省内

之值为1.033,接近于1。因此,计算各区脆弱性时实际是用的简化式,即

3.生态环境脆弱性分析

生态环境脆弱性指数划分。G≤0.4为生态轻度脆弱区;G=0.4~0.5为生态中度脆弱区;G=0.5~0.65为生态强度脆弱区;G≥0.65为生态极强脆弱区。全省平均生态环境脆弱指数为0.535,属生态环境脆弱区。符合生态质量良好,轻度脆弱的仅6个县区(商城、罗山、信阳、固始、桐柏、内乡)。符合生态环境中度脆弱的有36个县区,其中有8个县区(新县、潢川、正阳、确山、遂平、鲁山、南召、襄城)G值在0.4~0.45之间,生态质量尚差强人意。属生态环境强度脆弱的有71个县区,其中有12个县区(渑池、义马、新密、安阳县、新乡县、卫辉、滑县、长垣、南乐、濮阳县、济源市)生态环境脆弱指数大于0.6,接近极强脆弱区指标(表12.1.2)。

表12.1.2河南省生态环境脆弱性情况表

续表

⑻ 医院灾害脆弱性分析中相对风险值是如何计算的

严重性的分值相加所得值除以严重性的最大值,也就是18.所得数乘以100%。得相对风险值。17/18*100%=94%

阅读全文

与脆弱性计算方法相关的资料

热点内容
中式棉袄制作方法图片 浏览:62
五菱p1171故障码解决方法 浏览:857
男士修护膏使用方法 浏览:545
电脑图标修改方法 浏览:606
湿气怎么用科学的方法解释 浏览:536
910除以26的简便计算方法 浏览:804
吹东契奇最简单的方法 浏览:703
对肾脏有好处的食用方法 浏览:97
电脑四线程内存设置方法 浏览:511
数字电路通常用哪三种方法分析 浏览:12
实训课程的教学方法是什么 浏览:524
苯甲醇乙醚鉴别方法 浏览:81
苹果手机微信视频声音小解决方法 浏览:699
控制箱的连接方法 浏览:74
用什么简单的方法可以去痘 浏览:788
快速去除甲醛的小方法你知道几个 浏览:802
自行车架尺寸测量方法 浏览:123
石磨子的制作方法视频 浏览:151
行善修心的正确方法 浏览:402
薯仔炖鸡汤的正确方法和步骤 浏览:275