导航:首页 > 计算方法 > 空气动力学熵增量的计算方法

空气动力学熵增量的计算方法

发布时间:2022-10-10 05:17:21

❶ 汽车上的空气动力学原理

稳定性:取决于它的阻力系数。车辆在行驶当时有些气流从车底穿过,而这气流的密度大于从车顶飘过的气流时车辆伴有“发飘”或难以控制,此时有侧风从车旁吹过,也较易引发车身“偏移”现象,如果车辆质量大、轮胎抓地力强的话则偏移的现象就会减轻,同时耗油增加。所以车辆的阻力系数太大不是件好事。通常车底的气流密度一般要大于车辆上方的,让车辆有一定的稳定性或平衡性。

❷ 空气动力学

空气动力学
开放分类: 科学、物理、教育、物理学、学科

目录
• 空气动力学的发展简史
• 空气动力学的研究内容
• 空气动力学的研究方法
• 其它力学分支学科

空气动力学是力学的一个分支,它主要研究物体在同气体作相对运动情况下的受力特性、气体流动规律和伴随发生的物理化学变化。它是在流体力学的基础上,随着航空工业和喷气推进技术的发展而成长起来的一个学科。

空气动力学的发展简史
[编辑本段]

最早对空气动力学的研究,可以追溯到人类对鸟或弹丸在飞行时的受力和力的作用方式的种种猜测。17世纪后期,荷兰物理学家惠更斯首先估算出物体在空气中运动的阻力;1726年,牛顿应用力学原理和演绎方法得出:在空气中运动的物体所受的力,正比于物体运动速度的平方和物体的特征面积以及空气的密度。这一工作可以看作是空气动力学经典理论的开始。

1755年,数学家欧拉得出了描述无粘性流体运动的微分方程,即欧拉方程。这些微分形式的动力学方程在特定条件下可以积分,得出很有实用价值的结果。19世纪上半叶,法国的纳维和英国的斯托克斯提出了描述粘性不可压缩流体动量守恒的运动方程,后称为纳维-斯托克斯方程。

到19世纪末,经典流体力学的基础已经形成。20世纪以来,随着航空事业的迅速发展,空气动力学便从流体力学中发展出来并形成力学的一个新的分支。

航空要解决的首要问题是如何获得飞行器所需要的举力、减小飞行器的阻力和提高它的飞行速度。这就要从理论和实践上研究飞行器与空气相对运动时作用力的产生及其规律。1894年,英国的兰彻斯特首先提出无限翼展机翼或翼型产生举力的环量理论,和有限翼展机翼产生举力的涡旋理论等。但兰彻斯特的想法在当时并未得到广泛重视。

约在1901~1910年间,库塔和儒科夫斯基分别独立地提出了翼型的环量和举力理论,并给出举力理论的数学形式,建立了二维机翼理论。1904年,德国的普朗特发表了着名的低速流动的边界层理论。该理论指出在不同的流动区域中控制方程可有不同的简化形式。

边界层理论极大地推进了空气动力学的发展。普朗特还把有限翼展的三维机翼理论系统化,给出它的数学结果,从而创立了有限翼展机翼的举力线理论。但它不能适用于失速、后掠和小展弦比的情况。1946年美国的琼期提出了小展弦比机翼理论,利用这一理论和边界层理论,可以足够精确地求出机翼上的压力分布和表面摩擦阻力。

近代航空和喷气技术的迅速发展使飞行速度迅猛提高。在高速运动的情况下,必须把流体力学和热力学这两门学科结合起来,才能正确认识和解决高速空气动力学中的问题。1887~1896年间,奥地利科学家马赫在研究弹丸运动扰动的传播时指出:在小于或大于声速的不同流动中,弹丸引起的扰动传播特征是根本不同的。

在高速流动中,流动速度与当地声速之比是一个重要的无量纲参数。1929年,德国空气动力学家阿克莱特首先把这个无量纲参数与马赫的名字联系起来,十年后,马赫数这个特征参数在气体动力学中广泛引用。

小扰动在超声速流中传播会叠加起来形成有限量的突跃——激波。在许多实际超声速流动中也存在着激波。气流通过激波流场,参量发生突跃,熵增加而总能量保持不变。

英国科学家兰金在1870年、法国科学家许贡纽在1887年分别独立地建立了气流通过激波所应满足的关系式,为超声速流场的数学处理提供了正确的边界条件。对于薄冀小扰动问题,阿克莱特在1925年提出了二维线化机冀理论,以后又相应地出现了三维机翼的线化理论。这些超声速流的线化理论圆满地解决了流动中小扰动的影响问题。

在飞行速度或流动速度接近声速时,飞行器的气动性能发生急剧变化,阻力突增,升力骤降。飞行器的操纵性和稳定性极度恶化,这就是航空史上着名的声障。大推力发动机的出现冲过了声障,但并没有很好地解决复杂的跨声速流动问题。直至20世纪60年代以后,由于跨声速巡航飞行、机动飞行,以及发展高效率喷气发动机的要求,跨声速流动的研究更加受到重视,并有很大的发展。

远程导弹和人造卫星的研制推动了高超声速空气动力学的发展。在50年代到60年代初,确立了高超声速无粘流理论和气动力的工程计算方法。60年代初,高超声速流动数值计算也有了迅速的发展。通过研究这些现象和规律,发展了高温气体动力学、高速边界层理论和非平衡流动理论等。

由于在高温条件下会引起飞行器表面材料的烧蚀和质量的引射,需要研究高温气体的多相流。空气动力学的发展出现了与多种学科相结合的特点。

空气动力学发展的另一个重要方面是实验研究,包括风洞等各种实验设备的发展和实验理论、实验方法、测试技术的发展。世界上第一个风洞是英国的韦纳姆在1871年建成的。到今天适用于各种模拟条件、目的、用途和各种测量方式的风洞已有数十种之多,风洞实验的内容极为广泛。

20世纪70年代以来,激光技术、电子技术和电子计算机的迅速发展,极大地提高了空气动力学的实验水平和计算水平,促进了对高度非线性问题和复杂结构的流动的研究。

除了上述由航空航天事业的发展推进空气动力学的发展之外,60年代以来,由于交通、运输、建筑、气象、环境保护和能源利用等多方面的发展,出现了工业空气动力学等分支学科。

空气动力学的研究内容
[编辑本段]

通常所说的空气动力学研究内容是飞机,导弹等飞行器在名种飞行条件下流场中气体的速度、压力和密度等参量的变化规律,飞行器所受的举力和阻力等空气动力及其变化规律,气体介质或气体与飞行器之间所发生的物理化学变化以及传热传质规律等。从这个意义上讲,空气动力学可有两种分类法:

首先,根据流体运动的速度范围或飞行器的飞行速度,空气动力学可分为低速空气动力学和高速空气动力学。通常大致以400千米/小时这一速度作为划分的界线。在低速空气动力学中,气体介质可视为不可压缩的,对应的流动称为不可压缩流动。大于这个速度的流动,须考虑气体的压缩性影响和气体热力学特性的变化。这种对应于高速空气动力学的流动称为可压缩流动。

其次,根据流动中是否必须考虑气体介质的粘性,空气动力学又可分为理想空气动力学(或理想气体动力学)和粘性空气动力学。

除了上述分类以外,空气动力学中还有一些边缘性的分支学科。例如稀薄气体动力学、高温气体动力学等。

在低速空气动力学中,介质密度变化很小,可视为常数,使用的基本理论是无粘二维和三维的位势流、翼型理论、举力线理论、举力面理论和低速边界层理论等;对于亚声速流动,无粘位势流动服从非线性椭圆型偏微分方程,研究这类流动的主要理论和近似方法有小扰动线化方法,普朗特-格劳厄脱法则、卡门-钱学森公式和速度图法,在粘性流动方面有可压缩边界层理论;对于超声速流动,无粘流动所服从的方程是非线性双曲型偏微分方程。

在超声速流动中,基本的研究内容是压缩波、膨胀波、激波、普朗特-迈耶尔流动、锥型流,等等。主要的理论处理方法有超声速小扰动理论、特征线法和高速边界层理论等。跨声速无粘流动可分外流和内流两大部分,流动变化复杂,流动的控制方程为非线性混合型偏微分方程,从理论上求解困难较大。

高超声速流动的主要特点是高马赫数和大能量,在高超声速流动中,真实气体效应和激波与边界层相互干扰问题变得比较重要。高超声速流动分无粘流动和高超声速粘性流两大方面。

工业空气动力学主要研究在大气边界层中,风同各种结构物和人类活动间的相互作用,以及大气边界层内风的特性、风对建筑物的作用、风引起的质量迁移、风对运输车辆的作用和风能利用,以及低层大气的流动特性和各种颗粒物在大气中的扩散规律,特别是端流扩散的规律,等等。

空气动力学的研究方法
[编辑本段]

空气动力学的研究,分理论和实验两个方面。理论和实验研究两者彼此密切结合,相辅相成。理论研究所依据的一般原理有:运动学方面,遵循质量守恒定律;动力学方面,遵循牛顿第二定律;能量转换和传递方面,遵循能量守恒定律;热力学方面,遵循热力学第一和第二定律;介质属性方面,遵循相应的气体状态方程和粘性、导热性的变化规律,等等。

实验研究则是借助实验设备或装置,观察和记录各种流动现象,测量气流同物体的相互作用,发现新的物理特点并从中找出规律性的结果。由于近代高速电子计算机的迅速发展,数值计算在研究复杂流动和受力计算方面起着重要作用,高速电子计算机在实验研究中的作用也日益增大。因此,理论研究、实验研究、数值计算三方面的紧密结合是近代空气动力学研究的主要特征。

空气动力学研究的过程一般是:通过实验和观察,对流动现象和机理进行分析,提出合理的力学模型,根据上述几个方面的物理定律,提出描述流动的基本方程和定解条件;然后根据实验结果,再进一步检验理论分析或数值结果的正确性和适用范围,并提出进一步深入进行实验或理论研究的问题。如此不断反复、广泛而深入地揭示空气动力学问题的本质。

20世纪70年代以来,空气动力学发展较为活跃的领域是湍流、边界层过渡、激波与边界层相互干扰、跨声速流动、涡旋和分离流动、多相流、数值计算和实验测试技术等等。此外,工业空气动力学、环境空气动力学,以及考虑有物理化学变化的气体动力学也有很大的发展。

❸ 熵怎么计算

热力学中表征物质状态的参量之一,通常用符号S表示。在经典热力学中,可用增量定义为dS=(dQ/T),式中T为物质的热力学温度;dQ为熵增过程中加入物质的热量;下标“可逆”表示加热过程所引起的变化过程是可逆的。若过程是不可逆的,则dS>(dQ/T)不可逆。单位质量物质的熵称为比熵,记为 s。熵最初是根据热力学第二定律引出的一个反映自发过程不可逆性的物质状态参量。热力学第二定律是根据大量观察结果总结出来的规律,有下述表述方式:①热量总是从高温物体传到低温物体,不可能作相反的传递而不引起其他的变化;②功可以全部转化为热,但任何热机不能全部地、连续不断地把所接受的热量转变为功(即无法制造第二类永动机);③在孤立系统中,实际发生的过程,总使整个系统的熵值增大,此即熵增原理。摩擦使一部分机械能不可逆地转变为热,使熵增加。热量dQ由高温(T1)物体传至低温(T2)物体,高温物体的熵减少dS1=dQ/T1,低温物体的熵增加dS2=dQ/T2,把两个物体合起来当成一个系统来看,熵的变化是dS=dS2-dS1>0,即熵是增加的。
物理学上指热能除以温度所得的商,标志热量转化为功的程度。物质都有自己的标准熵,一个反应可以根据各种物质的熵来计算熵变。ΔH-TΔs是计算自由能的公式,用来判断反应的自发性。

❹ 空气动力学有没有方程怎么进行空气动力学计算

大气内飞行器中的空气动力学研究方向为升力与阻力,两者都有公式。
升力:Y= 1升力:Y=1/2 CyρV2S
ρ—空气密度
S—机翼面积
Cy—升力系数
V—气流速度
但是翼型不同,公式也不样同.Cy与机翼形状有关,可参考《飞造》

❺ 空气动力学有没有方程怎么进行空气动力学计算

大气内飞行器中的空气动力学研究方向为升力与阻力,两者都有公式。
升力:Y= 1升力:Y=1/2 CyρV²S
ρ—空气密度
S—机翼面积
Cy—升力系数
V—气流速度
但是翼型不同,公式也不样同.Cy与机翼形状有关,可参考《飞机构造》

❻ 关于飞机(空气动力学)

飞机速度大升力也就越大,不然为什么说飞机是失速坠落

飞机的机翼不是一片,是主翼和若干副翼操控,而且有些类型的飞机在机尾还设计有水平舵,这些零部件一起控制飞机处于平稳的平飞状态,直到有需要上升还是下降

所以不会出现一直上升,那是火箭

❼ 为什么说空气动力学对汽车很重要 我想知道一些有关空气动力学的事

空气动力学对车身稳定性,燃油经济性和表面尘埃有影响。当一个物体穿过空气时,会使周围的空气发生位移,同时该物体会受到重力和阻力的影响,因此阻力会由固体穿过流质(比如空气或水)的过程中产生。

当物体加速时,其速度和阻力同时增加,速度越快,阻力越大,也就是说车速越快的话车身所面临的空气阻力越强,而且是以成倍的速率增长,最终阻力将与重量相等达到一个平衡点,此时物体将无法继续加速。

车在市区等一些低俗行驶的环境时,基本上的马力用在了对抗地心引力,在高速公路等高速行驶环境下,更大的是对方风阻。把空气想象成薄层的话,当气流经过车身时保持流线状态,说明空气阻力对车身的影响较小。

一旦这种流线气流被打破并与车身轮廓分离便会产生乱流,从而产生空气阻力。其实最理想的低风阻形状是类似水滴的圆滑造型,头部圆滑而尾部尖细。理论上,这种水滴造型的Cd风阻系数只有0.05。

(7)空气动力学熵增量的计算方法扩展阅读

在研究车辆的空气动力学时,工程师不仅会研究车体表面的空气流通情况,同时还需考虑车底气流的通过状况。简单的说,越规整的车底,其车底的空气阻力和升力也会越小。这也就是为什么大家看到很多赛车和豪华车的车底都是一整块平面(也起到一定的保护作用),否则可能会造成翻车等事故。

其中最常见的就是发动机盖导流槽、翼子板导流板、前后下包围、侧裙板等这些设计,说它们能简单有效地引导气流,减小空气阻力。

要说空气动力套件还要从车辆的空气动力学讲起,当汽车行驶时,汽车周围的空气流动会对车辆产生各种各样的影响,空气能对汽车产生阻力、消耗能量、影响行驶稳定性;但另一方面,车辆的发动机、刹车等主要部件冷却又需要空气。除此之外包括气流的噪声,车身外表面的清洁,各种覆盖件的震动,甚至还有雨刷性能都会受到空气气流的影响。

❽ 各位兄弟谁有空气动力学的有关详细资料,谢了!

空气动力学
aerodynamics

研究空气或其他气体的运动规律,空气或其他气体与飞行器或其他物体发生相对运动时的相互作用和伴随发生的物理化学变化的学科。流体力学的一个分支。它是在流体力学基础上随航空航天技术的发展而形成的一门学科。
研究内容 根据空气与物体的相对速度是否小于约100米/秒(相应马赫数约0.3) , 可分为低速空气动力学和高速空气动力学,前者主要研究不可压缩流动,后者研究可压缩流动。根据是否忽略粘性,可分为理想空气动力学和粘性空气动力学。作用于飞行器的升力、力矩问题,可主要通过理想空气动力学求解。按流场边界不同,气流有外流和内流之分。外流指一般飞行器绕流和钝体绕流,内流主要指管道、进气道、发动机内的流动。专门研究钝体绕流的称钝体空气动力学;专门研究内流的称内流空气动力学。自20世纪60年代以后,空气动力学逐渐向非航空航天的一般工业与经济领域扩展和渗透,形成了工业空气动力学。此外还有一些边缘性分支学科,如稀薄气体动力学、高温气体动力学和宇宙气体动力学等(见气体动力学)。
①钝体空气动力学。研究钝形物体的绕流问题。钝体常具有钝头、钝尾或带棱角的形状,如桥梁、塔架、采油平台、大型冷却塔、高层建筑、火车、汽车等。当风吹过这些物体或物体在空气中运动时便产生钝体绕流现象。流线型飞机在大迎角飞行时,也属钝体绕流范畴。钝体绕流通常伴有复杂的分离和旋涡运动,有时还会产生流致振动(即物体或结构被流动激发的振动)。这是由于分离涡从物面周期性发放时,物体受到周期变化的流体动力作用而发生的受迫振动,甚至导致共振或变形发散,使结构破坏。1940年美国塔科马悬索桥在自然风作用下发生强烈振动而断裂就是一例。为此,在建筑设计中必须考虑结构的固有频率,还要进行风洞实验 。常采取的措施有减小跨度,增加刚度,改善外形等,或设置动力阻尼器。
②内流空气动力学。主要研究各种管道(如喷管、扩压管等)内部空气或其他气体的流动规律及其与边界的相互作用;有时还包括管道内叶轮机(如压气机、涡轮等)中的流动问题。管道中的流动一般可按一维流动处理。中国学者吴仲华于20世纪50年代初创立了叶轮机械三元流动理论。内流空气动力学的研究方法与一般空气动力学并无明显的不同。
③工业空气动力学。主要研究大气边界层(受地面摩擦阻力影响的大气层区域)内风与人类活动、社会和自然环境相互作用的规律。很多情况下,也称为风工程。主要内容包括:大气边界层内的风特性,如速度分布、湍流分布等;风对建筑物或构筑物的作用,以及对果园、树林等的风害及其防治;建筑物或群体所诱致的局部风环境;风引起的质量迁移,如气态污染物的排放、扩散和弥散规律;交通车辆(如汽车、火车)的气动特性及减阻措施等;风能利用;风对社会、经济的其他影响等。主要通过现场实测和实验室模拟进行研究。为此建造了专用的大气边界层风洞和密度分层的水槽等设备。
研究方法 主要有理论和实验两个方面。
①理论研究遵循的一般原理是流动的基本定律,如质量守恒定律、动量守恒定律、能量守恒定律、热力学定律以及介质的物理属性和状态方程等。但在不同速度范围、流动特征,上述基本定律的表现形式(即控制方程)、求解的理论和方法有很大差异。在低速不可压缩流范围,求解的基本理论有理想无粘流的基本解法、升力线和升力面理论、保角转绘理论、低速边界层理论等。在亚声速流动范围,理想无旋流方程属非线性椭圆型偏微分方程,主要求解方法有小扰动线化理论、亚声速相似律(如普朗特-格劳厄脱法则、卡门-钱学森公式等)、速度面法等。在超声速流动范围,方程属非线性双曲型偏微分方程,主要理论处理方法有小扰动线化理论、相似律、特征线法等。在跨声速流动范围,流动比较复杂,方程属非线性混合型偏微分方程,求解难度很大,主要用数值求解方法,有时也可用相似律等。在高超声速流动范围,流动中出现很多物理化学变化如烧蚀、传热传质等 ,而且必须考虑气体真实效应和激波- 边界层干扰( 物面附近的激波同边界层之间的相互影响)。
②实验研究是以相似理论为指导,在实验设备(主要是风洞)中模拟真实飞行而求解流动问题。计算机的应用和发展,使空气动力学有了深刻而巨大的进展。
在理论研究方面,通过数值计算直接求解基本方程,逐渐形成了计算空气动力学。在实验方面,提高了实验的自动化、高效率和高精度水平。理论研究、实验研究、数值计算3方面的紧密结合 ,已成为现代空气动力学的主要特征 。空气动力学作为一门基础学科,对航空航天技术的发展起着重要作用,对一般工业如建筑、交通、能源、环境保护等技术的发展也起着日益显着的作用。

❾ 空气动力学的流量是怎么计算的,公式是什么

Q=ρ*V*S,ρ为流体密度,V为流体速度,S为流管截面积。

阅读全文

与空气动力学熵增量的计算方法相关的资料

热点内容
中式棉袄制作方法图片 浏览:63
五菱p1171故障码解决方法 浏览:858
男士修护膏使用方法 浏览:546
电脑图标修改方法 浏览:607
湿气怎么用科学的方法解释 浏览:537
910除以26的简便计算方法 浏览:805
吹东契奇最简单的方法 浏览:704
对肾脏有好处的食用方法 浏览:98
电脑四线程内存设置方法 浏览:512
数字电路通常用哪三种方法分析 浏览:13
实训课程的教学方法是什么 浏览:525
苯甲醇乙醚鉴别方法 浏览:82
苹果手机微信视频声音小解决方法 浏览:700
控制箱的连接方法 浏览:75
用什么简单的方法可以去痘 浏览:789
快速去除甲醛的小方法你知道几个 浏览:803
自行车架尺寸测量方法 浏览:124
石磨子的制作方法视频 浏览:152
行善修心的正确方法 浏览:403
薯仔炖鸡汤的正确方法和步骤 浏览:276