导航:首页 > 计算方法 > 简单行列式计算方法及例题

简单行列式计算方法及例题

发布时间:2022-10-03 09:42:40

⑴ 行列式计算题 想要详细过程

第五题,行列式的值等于某一行(列)的元素与该元素的代数余子式乘积之和。如果这一行(列)的元素换成另一行(列)的元素和原来那行(列)元素的代数余子式乘积之和,那么,将这个乘积和重新返回写成行列式的形式,就会得到一个新的行列式,这个行列式有两行(列)的元素是一样的,那么这个行列式的值就是〇,所以第五题的那个乘积和等于0。
第六题,这需要计算四个三阶行列式之值,这四个代数余子式分别为
A[4,1]=(2×4×7+3×4×5+4×6×3-2×6×4-3×3×7-4×4×5)(-1)^(4+1)=-(56+60+72-48-63-80)=3,
A[4,2]=(1×4×7+3×4×1+4×6×3-1×4×6-3×3×7-1×4×4)(-1)^(4+2)=28+12+72-24-63-16=9,
A[4,3]=(1×3×7+2×4×1+4×5×3-1×5×4-2×3×7-1×4×4)(-1)^(4+3)=-(21+8+60-20-42-16)=-9,
A[4,4]=(1×3×6+2×4×1+3×5×3-1×5×4-2×3×6-1×3×3)(-1)^(4+2)=18+8+45-20-36-9=6,
所以A[4,1]+A[4,2]=3+9=12,
A[4,3]+A[4,4]=-9+6=-3。

⑵ 用行列式的定义计算下列行列式

按行列式定义,每项中,每行每列都只能取,且必取一个。

第一行只能取那个“1”。

第二行只能取“2”。

而由于已取过2,3列,第三行只能取“3”。

第四行只能取第4列的“4”。

而按行排序好后,列序数为3214,逆序数为3。

仅此一项不为0,所以行列式等于-24。

性质:

①行列式A中某行(或列)用同一数k乘,其结果等于kA。

②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。

⑶ 高数计算行列式

方法如下图所示,

请认真查看,


祝学习愉快:

⑷ 求4阶行列式计算方法

用两条线把行列式划成四个二阶行列式,最后计算二阶行列式的值得117。

将其中某一行或某一列的元素化为有尽可能多的零元素,然后按那行(列)展开,用其中每个元素乘以它的代数余子式,即得结果。

四阶行列式的计算方法:

第1步:把2、3、4列加到第1 列,提出第1列公因子 10,化为

1 2 3 4

1 3 4 1

1 4 1 2

1 1 2 3

第2步:第1行乘 -1 加到其余各行,得

1 2 3 4

0 1 1 -3

0 2 -2 -2

0 -1 -1 -1

第3步:r3 - 2r1,r4+r1,得

1 2 3 4

0 1 1 -3

0 0 -4 4

0 0 0 -4

所以行列式 = 10* (-4)*(-4) = 160。

性质

①行列式A中某行(或列)用同一数k乘,其结果等于kA。

②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。

以上内容参考:网络-行列式

⑸ 4阶行列式的计算方法,简单解题方法!!!

4阶行列式的计算方法:

第1步:把2、3、4列加到第1 列,提出第1列公因子 10,化为

1 2 3 4

1 3 4 1

1 4 1 2

1 1 2 3

第2步:第1行乘 -1 加到其余各行,得

1 2 3 4

0 1 1 -3

0 2 -2 -2

0 -1 -1 -1

第3步:r3 - 2r1,r4+r1,得

1 2 3 4

0 1 1 -3

0 0 -4 4

0 0 0 -4

所以行列式 = 10* (-4)*(-4) = 160。

(5)简单行列式计算方法及例题扩展阅读:

性质:

性质1行列式与它的转置行列式相等。

性质2互换行列式的两行(列),行列式变号。

推论如果行列式有两行(列)完全相同,则此行列式为零。

性质3行列式的某一行(列)中所有的元素都乘以同一数k,等于用数k乘此行列式。

推论行列式中某一行(列)的所有元素的公因子可以提到行列式符号的外面。

性质4行列式中如果有两行(列)元素成比例,则此行列式等于零。

性质5把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。

⑹ 求四阶行列式怎么求,例题如下图第三题!求方法

D=-1*(-1)^(3+1)*5+2*(-1)^(3+2)*3+0*(-1)^(3+3)*(-7)+1*(-1)^(3+4)*4=-5-6-4=-15。

若n阶方阵A=(aij),则A相应的行列式D记作D=|A|=detA=det(aij)。

若矩阵A相应的行列式D=0,称A为奇异矩阵,否则称为非奇异矩阵。

标号集:序列1,2,...,n中任取k个元素i1,i2,...,ik满足1≤i12<...k≤n(1)。

行列式A中某行(或列)用同一数k乘,其结果等于kA。

行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。

行列式A中两行(或列)互换,其结果等于-A。把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。



⑺ 4阶行列式的计算方法,解题方法....

有两种方法可供你选择
第一是你可以采取通过化为三角行列式的方法来进行计算

第二种方法是你可以通过展开式来进行计算
2种方法都是简单的

如果本题有什么不明白可以追问,如果满意请点击右下角“采纳为满意回答”
如果有其他问题请采纳本题后,另外发并点击我的头像向我求助,答题不易,请谅解,谢谢。
O(∩_∩)O,记得采纳,互相帮助
祝学习进步!

⑻ 三阶行列式计算方法

三阶行列式可用对角线法则:

D = a11a22a33 + a12a23a31 + a13a21a32- a13a22a31 - a12a21a33 - a11a23a32。

矩阵A乘矩阵B,得矩阵C,方法是A的第一行元素分别对应乘以B的第一列元素各元素,相加得C11,A的第一行元素对应乘以B的第二行各元素,相加得C12,C的第二行元素为A的第二行元素按上面方法与B相乘所得结果,N阶矩阵都是这样乘,A的列数要与B的行数相等。

三阶行列式性质:

性质1:行列式与它的转置行列式相等。

性质2:互换行列式的两行(列),行列式变号。

推论:如果行列式有两行(列)完全相同,则此行列式为零。

性质3:行列式的某一行(列)中所有的元素都乘以同一数k,等于用数k乘此行列式。

推论:行列式中某一行(列)的所有元素的公因子可以提到行列式符号的外面。

性质4:行列式中如果有两行(列)元素成比例,则此行列式等于零。

性质5:把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。

⑼ 行列式的八种基本题型是什么

1、箭型行列式;

2、两三角型行列式;

3、两条线型行列式;

4、范德蒙德型行列式;

5、Hessenberg型行列式;

6、三对角型行列式;

7、各行元素和相等型行列式;

8、相邻两行对应元素相差K倍型行列式。

(9)简单行列式计算方法及例题扩展阅读

性质

①行列式A中某行(或列)用同一数k乘,其结果等于kA。

②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。

④行列式A中两行(或列)互换,其结果等于-A。

⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。

阅读全文

与简单行列式计算方法及例题相关的资料

热点内容
中式棉袄制作方法图片 浏览:63
五菱p1171故障码解决方法 浏览:858
男士修护膏使用方法 浏览:546
电脑图标修改方法 浏览:607
湿气怎么用科学的方法解释 浏览:537
910除以26的简便计算方法 浏览:805
吹东契奇最简单的方法 浏览:704
对肾脏有好处的食用方法 浏览:98
电脑四线程内存设置方法 浏览:512
数字电路通常用哪三种方法分析 浏览:13
实训课程的教学方法是什么 浏览:525
苯甲醇乙醚鉴别方法 浏览:82
苹果手机微信视频声音小解决方法 浏览:700
控制箱的连接方法 浏览:75
用什么简单的方法可以去痘 浏览:789
快速去除甲醛的小方法你知道几个 浏览:803
自行车架尺寸测量方法 浏览:124
石磨子的制作方法视频 浏览:152
行善修心的正确方法 浏览:403
薯仔炖鸡汤的正确方法和步骤 浏览:276