导航:首页 > 计算方法 > 重积分计算方法

重积分计算方法

发布时间:2022-09-24 22:04:55

Ⅰ 二重积分的计算方法是怎样的

把二重积分化成二次积分,也就是把其中一个变量当成常量比如Y,然后只对一个变量积分,得到一个只含Y的被积函数,再对Y积分就行了。

计算二重积分的基本思路是简化积分计算思想,即把二重积分尽可能的转化为累次积分。

为此,必须注意:选取适合坐标,是否分域,如何定限。计算二重积分的主要方法有:利用对称性、奇偶性、变量替换、几何意义化简,利用直角坐标或极坐标化为二次积分,利用分域法,交换积分次序等能大大简化二重积分的计算,只要方法选得适当,二重积分的运算量就会小很多。

二重积分的现实(物理)含义:面积×物理量=二重积分值;

举例说明:二重积分的现实(物理)含义:

二重积分计算平面面积,即:面积×1=平面面积;二重积分计算立体体积,即:底面积×高=立体体积;二重积分计算平面薄皮质量,即:面积×面密度=平面薄皮质量。

(1)重积分计算方法扩展阅读:

二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。

在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。

Ⅱ 二重积分计算

原式=π/8,详情如图所示

有任何疑惑,欢迎追问

Ⅲ 二重积分的计算公式是什么

二重积分的计算公式:ydxdy=重心纵坐标×D的面积。二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。

重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。当被积函数大于零时,二重积分是柱体的体积。

几何意义:

在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。

例如二重积分,其中,表示的是以上半球面为顶,半径为a的圆为底面的一个曲顶柱体,这个二重积分即为半球体的体积。

数值意义:

二重积分和定积分一样不是函数,而是一个数值。因此若一个连续函数f(x,y)内含有二重积分,对它进行二次积分,这个二重积分的具体数值便可以求解出来。

如函数,其积分区域D是由所围成的区域。

Ⅳ 谁能清楚的告诉我二重积分到底怎么

把二重积分化成二次积分,也就是把其中一个变量当成常量比如Y,然后只对一个变量积分,得到一个只含Y的被积函数,再对Y积分就行了。你可以找一本高等数学书看看。。

你这个题目积分区域中,x,y并不成函数关系,要是积分区域是由比如说1<=x<=2,y=f(x),y=g(x),所围成的话,那么就要先对y积分其中上下限就是f(x),g(x),要看谁的图形在上谁就是上限,这时候的x就当做一个常数来看待(只含有x的项可以像提出常数一样提到积分号外面来)。这个第一次积分得到一个关于x的函数(这个结果是第二次积分的表达式),然后再对x积分,这时候上下限就是2和1。这样就得到积分值了。

(4)重积分计算方法扩展阅读

二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。

当被积函数大于零时,二重积分是柱体的体积。

当被积函数小于零时,二重积分是柱体体积负值。

Ⅳ 二重积分的计算方法

二重积分的计算方法:

把二重积分化成二次积分,也就是把其中一个变量当成常量比如Y,然后只对一个变量积分,得到一个只含Y的被积函数,再对Y积分就行了。

计算二重积分的基本思路是简化积分计算思想,即把二重积分尽可能的转化为累次积分。

在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。

二重积分和定积分一样不是函数,而是一个数值。因此若一个连续函数f(x,y)内含有二重积分,对它进行二次积分,这个二重积分的具体数值便可以求解出来。

Ⅵ 谁能清楚的告诉我二重积分到底怎么算

二重积分计算方法:化为二次积分。

1、直角坐标系中

当f(x,y)在区域D上可积时,其积分值与分割方法无关,可选用平行于坐标轴的两组直线来分割D,这时每个小区域的面积Δσ=Δx·Δy,因此在直角坐标系下,面积元素dσ=dxdy,从而二重积分可以表示为

(6)重积分计算方法扩展阅读

二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。

当被积函数大于零时,二重积分是柱体的体积。

当被积函数小于零时,二重积分是柱体体积负值。

Ⅶ 重积分的计算

利用极坐标计算二重积分,有公式 ∫∫f(x,y)dxdy=∫∫f(rcosθ,rsinθ)rdrdθ ,其中积分区域是一样的。 I=∫dx∫(x^2+y^2)^-1/2 dy x的积分上限是1,下限0 y的积分上限是x,下限是x2 积分区域D即为直线y=x,和直线y=x2在区间[0,1]所围成的面积,转换为极坐标后,θ的范围为[0,π/4],下面计算r的范围:因为y=x2的极坐标方程为:rsinθ=r2cos2θ r=sinθ/cos2θ 因为直线y=kx和曲线y=x2的交点为(0,0),(k,k2),所以在极坐标中r的取值范围为[0,sinθ/cos2θ],则积分I化为极坐标的积分为 I=∫dθ∫1/√(rcosθ)2+(rsinθ)2rdr =∫dθ∫dr (θ范围[0,π/4],r范围[0,sinθ/cos2θ]) =∫(sinθ/cos2θ)dθ(θ范围[0,π/4]) =∫(-1/cos2θ)dcosθ =|1/cosθ|(θ范围[0,π/4]) =1/cos(π/4)-1/cos0 =√2-1

Ⅷ 重积分怎么算

设二元函数z=f(x,y)定义在有界闭区域D上,将区域D任意分成n个子域 ,并以 表示第 个子域的面积。在 上任取一点 作和 。如果当各个子域的直径中的最大值 趋于零时,此和式的极限存在,且该极限值与区域D的分法及 的取法无关,则称此极限为函数 在区域 上的二重积分,记为 ,即 。这时,称 在 上可积,其中 称被积函数, 称为被积表达式, 称为面积元素, 称为积分区域, 称为二重积分号。同时二重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心,平面薄片转动惯量,平面薄片对质点的引力等等。此外二重积分在实际生活,比如无线电中也被广泛应用。

阅读全文

与重积分计算方法相关的资料

热点内容
中式棉袄制作方法图片 浏览:65
五菱p1171故障码解决方法 浏览:859
男士修护膏使用方法 浏览:548
电脑图标修改方法 浏览:608
湿气怎么用科学的方法解释 浏览:539
910除以26的简便计算方法 浏览:807
吹东契奇最简单的方法 浏览:706
对肾脏有好处的食用方法 浏览:100
电脑四线程内存设置方法 浏览:514
数字电路通常用哪三种方法分析 浏览:17
实训课程的教学方法是什么 浏览:527
苯甲醇乙醚鉴别方法 浏览:84
苹果手机微信视频声音小解决方法 浏览:702
控制箱的连接方法 浏览:76
用什么简单的方法可以去痘 浏览:791
快速去除甲醛的小方法你知道几个 浏览:805
自行车架尺寸测量方法 浏览:125
石磨子的制作方法视频 浏览:154
行善修心的正确方法 浏览:404
薯仔炖鸡汤的正确方法和步骤 浏览:276