⑴ 二重积分的计算方法
咨询记录 · 回答于2021-08-05
⑵ 参数方程二重积分计算方法
以下面一道例题来论述
第一步,把二重积分的内积分先积分,进而把二重积分转化为定积分。
第二步,将参数方程代入第一步中得到的定积分,即可得到只有t的定积分,然后按定积分的计算方法进行。
⑶ 计算二重积分
解:分享一种解法。
由题设条件,有-a≤x≤a,-√(a²-x²)≤y≤√(a²-x²)。∴原式=∫(-a,a)dx∫(-√(a²-x²),√(a²-x²))(x²-2x+3siny+4)dy。
对∫(-√(a²-x²),√(a²-x²))(x²-2x+3siny+4)dy,利用被积函数的奇偶性性质,∴∫(-√(a²-x²),√(a²-x²))(x²-2x+3siny+4)dy=2∫(0,√(a²-x²))(x²-2x+4)dy=2(x²-2x+4)√(a²-x²)。
∴原式=2∫(-a,a)[(x²-2x+4)√(a²-x²)]dx。再利用被积函数的奇偶性性质,∴原式=4∫(0,a)[(x²+4)√(a²-x²)]dx。
令x=asinθ,原式=∫(0,π/2)[a²sin²θ+4)a²cos²θdθ=a²(a²+16)π/4。
供参考。
⑷ 谁能清楚的告诉我二重积分到底怎么算
把二重积分化成二次积分,也就是把其中一个变量当成常量比如Y,然后只对一个变量积分,得到一个只含Y的被积函数,再对Y积分就行了。你可以找一本高等数学书看看。。
你这个题目积分区域中,x,y并不成函数关系,要是积分区域是由比如说1<=x<=2,y=f(x),y=g(x),所围成的话,那么就要先对y积分其中上下限就是f(x),g(x),要看谁的图形在上谁就是上限,这时候的x就当做一个常数来看待(只含有x的项可以像提出常数一样提到积分号外面来)。这个第一次积分得到一个关于x的函数(这个结果是第二次积分的表达式),然后再对x积分,这时候上下限就是2和1。这样就得到积分值了。
二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。
当被积函数大于零时,二重积分是柱体的体积。
当被积函数小于零时,二重积分是柱体体积负值。
⑸ 二重积分如何计算,顺便举个简单的例题
把二重积分化成二次积分,也就是把其中一个变量当成常量比如Y,然后只对一个变量积分,得到一个只含Y的被积函数,再对Y积分就行了。
题目积分区域中,x,y并不成函数关系,要是积分区域是由比如说1<=x<=2,y=f(x),y=g(x),所围成的话,那么就要先对y积分其中上下限就是f(x),g(x),要看谁的图形在上谁就是上限,这时候的x就当做一个常数来看待(只含有x的项可以像提出常数一样提到积分号外面来)。
这个第一次积分得到一个关于x的函数(这个结果是第二次积分的表达式),然后再对x积分,这时候上下限就是2和1。这样就得到积分值了。
参考资料:网络-二重积分
⑹ 二重积分一共有多少种计算方法,分别是什么求归纳
二重积分一共一般有三种计算方法:变限求积分,直角坐标化极坐标,作图构思取最简单的微元。
当f(x,y)在区域D上可积时,其积分值与分割方法无关,可选用平行于坐标轴的两组直线来分割D,这时每个小区域的面积Δσ=Δx·Δy,因此在直角坐标系下,面积元素dσ=dxdy。可以看出二重积分的值是被积函数和积分区域共同确定的。
(6)二重积分计算方法扩展阅读:
对任意取定的x0∈[a,b],过点(x0,0,0)作垂直于x轴的平面x=x0,该平面与曲顶柱体相交所得截面为区间,z=f(x0,y)为曲边的曲边梯形,由于x0的任意性。
其中y是积分变量在积分过程中视x为常数。上述曲顶柱体可看成平行截面面积S(x)从a到b求定积分的体积。
⑺ 二重积分计算
一楼的说法不对!
一重积分,可以计算长度,可以计算面积,也可以计算体积(最典型的是旋转体的体积);
二重积分,可以计算面积,也可以计算体积。
三重积分,可以计算体积。
具体如何,一看被积函数,二看积分限怎么确定。
方法是活的,关键在于如何运用。
⑻ 二重积分的计算方法是怎样的
把二重积分化成二次积分,也就是把其中一个变量当成常量比如Y,然后只对一个变量积分,得到一个只含Y的被积函数,再对Y积分就行了。
计算二重积分的基本思路是简化积分计算思想,即把二重积分尽可能的转化为累次积分。
为此,必须注意:选取适合坐标,是否分域,如何定限。计算二重积分的主要方法有:利用对称性、奇偶性、变量替换、几何意义化简,利用直角坐标或极坐标化为二次积分,利用分域法,交换积分次序等能大大简化二重积分的计算,只要方法选得适当,二重积分的运算量就会小很多。
二重积分的现实(物理)含义:面积×物理量=二重积分值;
举例说明:二重积分的现实(物理)含义:
二重积分计算平面面积,即:面积×1=平面面积;二重积分计算立体体积,即:底面积×高=立体体积;二重积分计算平面薄皮质量,即:面积×面密度=平面薄皮质量。
(8)二重积分计算方法扩展阅读:
二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。
在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。