导航:首页 > 计算方法 > 图形规律计算方法

图形规律计算方法

发布时间:2022-09-14 14:44:44

❶ 数图形个数规律公式

中间用1条线分成2后变成3个,2+1=3
中间用2条线分成3后变成6个 3+2+1=6
中间用3条线分成4后变成10个 4+3+2+1=10
中间用4条线分成5后变成15个,5+4+3+2+1=15
因此
中间用N条线分分成(N+1)后变成:(N+1)+(N)+(N-1)+···+3+2+1
这是一个级数
其求和公式为:
M=1/2(n+1)(n+2)

❷ 初一上学期图形找规律有哪几种方法为什么有些题答案为2(n+1)为什么还要加上(n+1)请举例说明。

归纳归纳归纳归纳————猜想猜想猜想猜想~~~找规律找规律找规律找规律 给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题. 一一一一、、、、数字排列规律题数字排列规律题数字排列规律题数字排列规律题 1、观察下列各算式: 1+3=4=2的平方,1+3+5=9=3的平方,1+3+5+7=16=4的平方… 按此规律 (1)试猜想:1+3+5+7+…+2005+2007的值 ? (2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ? 2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __ 3、请填出下面横线上的数字。 1 1 2 3 5 8 ____ 21 4、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个数是什么? 5、有一串数字 3 6 10 15 21 ___ 第6个是什么数? 6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是( ). A.1 B.2 C.3 D.4 7、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 _________个. 二二二二、、、、几何图形变化规律题几何图形变化规律题几何图形变化规律题几何图形变化规律题 1、观察下列球的排列规律(其中●是实心球,○是空心球): ●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●…… 从第1个球起到第2004个球止,共有实心球 个. 2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称). 三三三三、、、、数数数数、、、、式计算规律题式计算规律题式计算规律题式计算规律题 1、已知下列等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ; 由此规律知,第⑤个等式是 . 2、观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,… 根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____.
呵呵,不错吧

❸ 公务员图形规律题。

对图形推理题的解答,应注意以下技巧:
第一,树立“元素”概念。把每个图形当成是整体的组成“元素”。且要观察细心,善于提炼。元素一般包括点、线、面、体。就近两年的真题来看,主要考察的是“体”,即小图形组成大图形。每种元素数量的变化、旋转或转动的方向上有无规律、图形之间是否互相叠加、外形上是否相等。因此选择答案时要仔细,不要发生视觉错误。还要学会运用变异思维,例如,有时缺乏某个元素,反倒可以说存在“有”、“无”方面的规律。
第二,寻找变化规律。可以从许多角度看其变化的规律。与前面的类型众多的数列、计算方法相比,图形变化的规律更加众多、复杂,而且可能是闻所未闻的变化“规律”,要靠应试者的逻辑思维功底和思维的灵活性来应对、解决。
第三,特殊图形注意采用特殊的规律。如元素组合类图形用元素组合推理规律等。如出现了四个“圆”,只能看作是“有”圆,而不计算“圆”的数量,这就是说,在某个图形的局部内容“构成不构成元素”的问题上,有着极大的干扰。
一些图形推理中容易出现的解题规律:
对比推理中,大致包含有:图形大小形状变化规律、图形数量变化规律、笔画规律、对应相似规律、图形去同存异或去异存同规律、图形旋转规律或翻转规律、图形移动规律、轴对称与中心对称规律、阴影类图形规律等。另外,还有一些特殊规律,奇数、偶数项间隔规律,以第三个图为中心左右对称规律,综合规律(同时运用多种规律)等。
拆分重组中,其最关键的条件就是要求组成新的图形是在同一个平面上,在这个基础上进行方向和位置的变化,如果进行翻转或折叠就会得到错误的图形。另外,还要注意把原图进行拆分,再与选项进行对比,有一些是需要把拆分部分在同一平面上移动,方向、位置出现变化才能得到。
“九宫格”推理,其实质是利用图形对比推理和视觉推理的一些规律,把这种规律多次运用,多方位运用的组合。解答该类试题要看清楚题型要求,根据例题规范,从横向和纵向两个方位进行观察,找出一个都适合的规律,加以综合运用。
折叠图形中,抓住两面相对与相邻的情形,相对不可能相邻,相邻不可能相对,选项中如果有违背这些特征的,便是错误选项。此外,还要注意立体图形的旋转规律。
图形推理是困扰很多考生的一大难题,所以做图形推理题的关键就是掌握好各种图形的变换规律,并勤加练习,俗语说熟能生巧,相信大家按照以上方法和规律训练一段时间后,能力会得到较大的提高。

❹ 图形找规律

答:B(我看你已在B处打了✅)
图形规律:按照逆时针螺旋式遍历,从第一列到最后一行到最后一列………以此类推,图形是按固定顺序出现的,且每块相邻的方块图形皆不相同。

❺ 巧数正方形个数的规律

将正方形的一角作为初始点,分别向两边写上正方形的个数,标好个数之后再用两边相对应的数字进行相乘,然后将乘的积进行相加,最终所得的和就是正方形的个数。

1、正方形的两组对边分别平行,四个角都是90°,邻边互相垂直,对角线互相垂直,平分且相等,每条对角线都平分一组对角,正方形是矩形的特殊形式,也是菱形的特殊形式。

2、数图形时要有次序、有条理,才能不遗漏,不重复,一般步骤应是:仔细观察,发现规律,应用规律。

3、长方形是用“点”或者“线”来数的,而正方形是用“块”来数的。

4、数长方形的公式:长边上的线段和×宽边上的线段和。

5、数正方形的公式:

1,一个被划分成m×n的小正方形的长方形中共可以数出的正方形的个数是:
m×n+(m-1)×(n-1)+(m-2)×(n-2)+…………………………+1×【n-(m-1)】 (其中m<n)
当m=n时,即一个划分成n×n=n2个小正方形的正方形中,共可以数出正方形的个数是:n2+(n-1)2+……………………+22+12.

典型例题:

1、长方形的构成必须有长和宽,下图中有许多长方形,你能数出它们有多少个?

分析与解答:

因为长方形的构成与长的线段数有关,也与宽的线段数有关,所以数长方形的个数必须要看长与宽两个因素。

❻ 图形推理有什么技巧

图形推理是很常见的推理题型,在做这类型题目的时候,同学们出现了“两极分化”的特征,有的同学很快找到规律,做出了题目,有的同学却一直看着第一题“百思不得其解”。出现这样的情况,其根本原因在于图形推理是技巧性很强的题目,如果知道技巧,可以很快知道出题人考查的重点,从而快速联想到可会考的规律。

下面我们一起来看一下图形推理的规(tao)律(lu):

第一层:相似性

相异(图形差距很大)→数量关系

相同(图形差距很小)→位置关系

相似(图形有点相似)→叠加关系

总结:

图形推理根据相似性可首先分为:

1、(相异)数量推理

点:交点、切点

线:曲线、直线、一笔画/多笔画

面:封闭空间、特殊图形

对称:对称轴、对称点

2、(相同)位置推理

平移

旋转

翻转

3、(相似)叠加推理

直接叠加

存同/存异叠加

规律叠加

以上便是判断图形推理考查点的技巧,但是在具体的考试中考查方法并不固定,最常见的就是多种考查点的叠加,比如:先翻转,再旋转。也可能在数量关系常见的题型中考查别的关系,比如:对称轴的位置关系。于是要求同学们进行大量的练习,善于利用技巧而不拘泥于技巧,做出快速且准确的判断。

盼采纳~

❼ 图形中的规律是什么

图形中的规律如下:

四边形能分成(2)个三角形,五边形能分成(3)个三角形,六边形能分成( 4)个三角形,七边形能分成( 5)个三角形。

对图形推理题的解答,应注意以下技巧:

第一,树立“元素”概念。把每个图形当成是整体的组成“元素”。且要观察细心,善于提炼。元素一般包括点、线、面、体。就近两年的真题来看,主要考察的是“体”,即小图形组成大图形。

每种元素数量的变化、旋转或转动的方向上有无规律、图形之间是否互相叠加、外形上是否相等。因此选择答案时要仔细,不要发生视觉错误。还要学会运用变异思维,例如,有时缺乏某个元素,反倒可以说存在“有”、“无”方面的规律。

第二,寻找变化规律。可以从许多角度看其变化的规律。与前面的类型众多的数列、计算方法相比,图形变化的规律更加众多、复杂,而且可能是闻所未闻的变化“规律”,要靠应试者的逻辑思维功底和思维的灵活性来应对、解决。

第三,特殊图形注意采用特殊的规律。如元素组合类图形用元素组合推理规律等。如出现了四个“圆”,只能看作是“有”圆,而不计算“圆”的数量,这就是说,在某个图形的局部内容“构成不构成元素”的问题上,有着极大的干扰。

以上内容参考:网络-图形规律

❽ 图形找规律题,如何找规律答案是什么

第一排:一个○一个□,所以接下来是□○□○□

第二排:一个◇一个☆两个◇一个☆,

所以接下来是◇◇◇☆◇◇◇◇☆

第三排:一个蓝色八角形一个粉色八角形一个☆

接下来也是这样重复

第四排:两个☆一个△一个□

所以接下来也是☆☆△□

阅读全文

与图形规律计算方法相关的资料

热点内容
魅族相机水印设置在哪里设置方法 浏览:354
lol里缓存视频在哪里设置方法 浏览:298
眼睛模糊土方法怎么治疗 浏览:418
隧道防风布正确安装方法 浏览:357
手机拍照放大到6倍的方法 浏览:766
除湿器使用方法 浏览:522
口臭怎么去除最快方法三七粉 浏览:952
35岁内斜视眼恢复最简单方法 浏览:786
中蜂越冬的解决方法 浏览:429
洛阳养老金计算方法 浏览:105
治疗白斑有效的方法 浏览:456
土粒的沉降分析方法有哪些 浏览:969
小冻干燕窝的食用方法 浏览:97
成都中风锻炼小方法 浏览:293
五星红旗怎么折的方法 浏览:762
成年人经常磨牙解决方法 浏览:320
预制剪力墙结构钢筋连接方法 浏览:312
儿童远视训练方法 浏览:23
练字的技巧与方法视频 浏览:237
塑料模具研究方法 浏览:780