导航:首页 > 计算方法 > 根号计算方法

根号计算方法

发布时间:2022-01-13 01:54:25

⑴ 根号是怎么算的,比如根号8。

√8=√(4*2)=√(2的平方*2), 因为√(2的平方)=2,原式=2√2。2√2是最简根式,不需再化简。

又如√12=√(2平方*3)=2√3。

√24=√(2平方*6)=2√6。

√27=√(3平方*3)=3√3。

完全平方数可以从平方根下提出,不是完全平方数,提不出来。

(1)根号计算方法扩展阅读:

在实数范围内,

(1)偶次根号下不能为负数,其运算结果也不为负。

(2)奇次根号下可以为负数。

不限于实数,即考虑虚数时,偶次根号下可以为负数,利用【i=√-1】即可。

根号的运算法则:

1.√a+√b=√b+√a。

2.√a-√b=-(√b-√a)。

3.√a*√b=√(a*b)。

4.√a/√b=√(a/b)。

⑵ 根号怎么计算

手工开根号法,只适用于任何一个整数或者有限小数开二次方.
因为网上写不出样式复杂的计算式,所以只能尽量书写,然后通过口述来解释:
假设一个整数1456456,开根号首先要从个位开畅揣扳废殖肚帮莎爆极始,每两位数做个标记,这里用'表示,那么标记后变成1'45'64'56.然后根据你要开的小数位数在小数点后补0,这里的举例开到整,则补2个0,(原因等明白该做法后自会理解),解法如下:
解法中需要说明的几个问题:
1,算式中的....没有意义,是因为网上无法排版,为了能把版式排得整齐点而加上的
2,为了区别小数点,所以小数点用。表示,而所有的.都是为了排版需要
3、除了1'45'64'56中的'有特殊意义,在解题中有用处外,其他的'都是为了排版和对起位置,说明数字来源而加的,取消没有任何影响
...........1..2..0..6.8
.........-----------------------
.....1../..1'45'64'56.00........(1)
.............1
............--------
.......22..|.45.................(2)
..............44
..............--------
........240.|.1'64..............(3)
....................0
...............---------
.......2406.|.1'64'56...........(4)
..................1'44'36
.................-----------
........24128.|.20'20'00........(5)
....................19'29'74
..................----------
.......................10'26
其中第(1)步的意思是对左起第一个'号前的数字进行开方,即本题中的1进行开方.并将数字写在上面.
第(2)步的意思是将第二个'号和第一个'号之间的数字,即45,写下来作为被除数,把上一步已经得到并写在上面的数字1乘以20作为除数的一部分,另一部分就得通过判断,得到一个数字a,使得除数为(1*20+a),同时商也为a,本步骤中,判断得到a应为2,所以除数是22,而2作为商写到了上面,1的右边.
第(3)步,把上一步除法计算的余数1移下来,同时把第三个'号和第二个'号之间的数字64也移下来,组成数字164作为被除数,然后重复上面的方法,把之前写到上面的数字12乘以20再加上一个可以作为本步骤的商的数字,组成除数.因为经过判断,本步骤只有0符合条件,所以除数是240,而商是0写到上面,164作为余数向下移.
第(4)步,如果前面能看懂的话,这一步其实只是前面的重复,把164和56都移下来组成被除数16456,然后120乘以20再加上6组成除数,同时6本身就是商,得到余数2020.
第(5)步依然是重复,需要特殊说明的是,对于小数点后面的数字,用0补位数就可以了,依然是两位加个'号,做法不变.
上面就是基本步骤了,总结起来就是先分位数,然后对第一个分位数字进行开方,如果有余数就想下移,和第二个分位组成被除数.而除数是之前已经得到的商乘以20加上某数字组成,而这个数字要在这个步骤中作为商出现的,所以这个数字是0-9中的哪个数字,得进行心算或口算来判断,得到余数再下移,一直重复到得到答案.
其中还要说明的是每一步得到的余数一定不能比除数大,也不能小于0,不然是无效的,说明选择做商的数字是不对的.

⑶ 数学公式根号怎么计算

从个位起向左每隔两位为一节,若带有小数从小数点起向右每隔两位一节,用“,”号将各节分开; 2.求不大于左边第一节数的完全平方数,为“商”; 3.从左边第一节数里减去求得的商,在它们的差的右边写上第二节数作为第一个余数; 4.把商乘以20,试除第一个余数,所得的最大整数作试商(如果这个最大整数大于或等于10,就用9或8作试商); 5.用商乘以20加上试商再乘以试商。如果所得的积小于或等于余数,就把这个试商写在商后面,作为新商;如果所得的积大于余数,就把试商逐次减小再试,直到积小于或等于余数为止; 6.用同样的方法,继续求。 上述笔算开方方法是我们大多数人上学时课本附录给出的方法,实际中运算中太麻烦了。我们可以采取下面办法,实际计算中不怕某一步算错!!!而上面方法就不行。 比如136161这个数字,首先我们找到一个和136161的平方根比较接近的数,任选一个,比方说300到400间的任何一个数,这里选350,作为代表。 我们计算0.5*(350+136161/350)得到369.5 然后我们再计算0.5*(369.5+136161/369.5)得到369.0003,我们发现369.5和369.0003相差无几,并且,369^2末尾数字为1。我们有理由断定369^2=136161 一般来说能够开方开的尽的,用上述方法算一两次基本结果就出来了。再举个例子:计算469225的平方根。首先我们发现600^2<469225<700^2,我们可以挑选650作为第一次计算的数。即算 0.5*(650+469225/650)得到685.9。而685附近只有685^2末尾数字是5,因此685^2=469225 对于那些开方开不尽的数,用这种方法算两三次精度就很可观了,一般达到小数点后好几位。 实际中这种算法也是计算机用于开方的算法

⑷ 数学开根号怎么算

方法分类如下:

1.完全平方数

把任何含完全平方数的根式化简。完全平方数是一个数乘以自己得到的数,比如81就是9*9得到的。要简化,直接去掉根号,换成平方根数即可。

比如121就是完全平方数, 11 x 11= 121 你可直接把根号移掉,写成11就可。要想更简单点,你要记住下面的头十二个数的完全平方数:1 x 1 = 1, 2 x 2 = 4, 3 x 3 = 9, 4 x 4 = 16, 5 x 5 = 25, 6 x 6 = 36, 7 x 7 = 49, 8 x 8 = 64, 9 x 9 = 81, 10 x 10 = 100, 11 x 11 = 121, 12 x 12 = 144。

2.完全立方数

把任何含完全立方数的根式化简。完全立方数是一个数连续两次乘以自己而得到的数,比如27就是3*3*3得到的。要简化,直接去掉根号,换成立方根数即可。比如 512 就是完全立方数,因为8 x 8 x 8=512。 因此512的立方根就是8。

3.不能完全化简的根式

(1)把被开方数拆成自己的乘数。乘数是相乘得到目标数的数字。比如5、4是20的一对乘数,要把不能完全化简的根式中的数拆分成所有可能的乘数组合(太大的话就尽量多想),直到有完全平方数为止。

比如试着把所有的45乘数列出: 1, 3, 5, 9, 15, 和 45。 9 是一个乘数 ,亦是一个完全平方数。 9 x 5 = 45。

(2)把任何是完全平方数的乘数移出来。9是完全平方数(3*3),就把3提出来,根号里保留5。如果要把3放回去,就求平方得9再和5相乘得45。3根号5是根号45的简化说法。

4.含有变量的根式

(1)找出完全平方式。a的二次方的平方根就是 a, a的三次方的平方根就是 a乘以根号 a。因为你加了个指数,用根号a乘以a就相当于根号下的a的三次方。因此这里的完全平方数就是“a”的平方。

⑸ 求根号的计算方法

看看这个你就明白了:

假设被开放数为a,如果用A(a)表示根号a 那么((A(x)-A(a/x))^2=0的根就是A(a)
变形得
A(a)=(x+a/x)/2
所以你只需设置一个约等于(x+a/x)/2的初始值,代入上面公式,可以得到一个更加近似的值,再将它代入,就得到一个更加精确的值……依此方法,最后得到一个足够精度的(x+a/x)/2的值。
如:计算sqrt(5)
设初值为2
1)A(5)=(2+5/2)/2=2.25
2)A(5)=(2.25+5/2.25)/2=2.236111
3)A(5)=(2.236111+5/2.236111)/2=2.236068
这三步所得的结果和A(5)相差已经小于0.001
同样可以计算A(2)也就是说根号2的结果.

⑹ 根号运算公式

计算公式

4、成立条件:a≥0,b>0,n≥2且n∈N。

(6)根号计算方法扩展阅读

二次根式运算注意事项:

1、二次根式相加减,先把各根式化为最简二次根式,再合并同类二次根式。

2、二次根式的乘除法常用乘法公式或除法公式来简化计算,运算结果一定要写成最简二次根式。

3、利用三角形的三边关系进行化简。利用二次根式的双重非负性的性质,被开方数开方出来后,等于它的绝对值。

⑺ 根号怎么算啊,计算过程

计算公式:

。”

有时候被开方数的项数较多,为了避免混淆,笛卡尔就用一条横线把这几项连起来,前面放上根号√ ̄(不过,它比路多尔夫的根号多了一个小钩)就为现时根号形式。

立方根符号出现得很晚,一直到十八世纪,才在一书中看到符号 的使用,比如25的立方根用 表示。以后,诸如√ ̄等等形式的根号渐渐使用开来。

由此可见,一种符号的普遍采用是多么地艰难,它是人们在悠久的岁月中,经过不断改良、选择和淘汰的结果,它是数学家们集体智慧的结晶,而不是某一个人凭空臆造出来的,也绝不是从天上掉下来的。

按住ALT,然后按顺序按41420(小键盘)就可以打出电脑中的根号“√”。

⑻ 根号运算法则

√a+√b=√b+√a√a-√b=-(√b-√a)√a*√b=√(a*b)√a/√b=√(a/b)

⑼ 根号怎么算

1、√ab=√a·√b﹙a≥0b≥0﹚ 这个可以交互使用.这个最多运用于化简,如:√8=√4·√2=2√2

2、√a/b=√a÷√b﹙a≥0b﹥0﹚

3、√a²=|a|(其实就是等于绝对值)这个知识点是二次根式重点也是难点。当a>0时,√a²=a(等于它的本身);当a=0时,√a²=0;当a<0时,√a²=-a(等于它的相反数)

4、分母有理化:分母不能有二次根式或者不能含有二次根式。当分母中只有一个二次根式,那么利用分式性质,分子分母同时乘以相同的二次根式。如:分母是√3,那么分子分母同时乘以√3。

当分母中含有二次根式,利用平方差公式使分母有理化。具体方法,如:分母是√5 -2(表示√5与2的差)要使分母有理化,分子分母同时乘以√5+2(表示√5与2的和)

(9)根号计算方法扩展阅读

在实数范围内,偶次根号下不能为负数,其运算结果也不为负。奇次根号下可以为负数。不限于实数,即考虑虚数时,偶次根号下可以为负数,利用【i=√-1】即可

参考资料

网络-根号

阅读全文

与根号计算方法相关的资料

热点内容
女性腰盘突出治疗方法 浏览:660
数据仓库模型设计的常用方法 浏览:664
食用菌种的化学保存方法 浏览:588
耐高温红胶使用方法 浏览:823
杀活兔子的方法技巧 浏览:955
尘埃计数器使用方法 浏览:214
量化分析方法举例 浏览:530
榛子的育苗方法图片 浏览:211
常用的累积粉丝的方法 浏览:194
香港拓客方法有哪些 浏览:421
三星手机设置铃声哪里设置方法 浏览:429
帽子制作方法视频手工 浏览:950
如何用spss进行人口预测方法 浏览:649
艾蜜塔使用方法 浏览:931
湿气重怎么祛除最快最有效方法 浏览:387
硅酸盐水泥板安装方法 浏览:160
车间门安装方法 浏览:510
中药山药食用方法 浏览:936
外科手术区皮肤消毒方法步骤 浏览:883
耳道干燥快速恢复十大方法 浏览:855