㈠ 初中数学几何题
能解一切初中几何题的方法
最近做了一道“厄运几何题 (Geometry Problem of Doom)”。图形很简单,和中考数学压轴题很像。但有一个特殊要求:不能使用任何三角学的知识。研究了几个小时,写满了六页纸也没证明出来。突然发现,不让用三角学意味着此题用三角学可以解决。于是建立坐标系,用很机械但很系统的方法,把每个关键点的坐标都用三角函数表示出来。十分钟后,结果出来了。由此引发以下猜想。
猜想:在已下定义的几何图形中,用“建立坐标系并把每个点的坐标用三角学定理表示”的方法,外加基本数学技巧,可以求出或表示出一切值。
具体方法:选某点为原点,以一定方向为X轴正方向,建立平面直角坐标系。然后利用已知条件把每一个点表示出来。
注:1)为减少计算量,应选关键点为原点,选关键直线为X轴正方向;2)可以不求某些不重要的点的坐标;3)在表示坐标的时候会大量用到解三角形的定理,如勾股定理和正弦定理。熟知它们有助于提高效率。
尽管目前只在一道题中进行了实验,不过我感觉很有把握。如果成立的话,那么这种方法可以解决一切中考几何或代几综合题,毕竟中考几何题还是相对简单的。也就是说,这是一个解一切几何题的公式。这对解中考数学最后三道压轴题帮助极大。至于是否适用于高中几何,我不确定,毕竟我没在国内高中上过。但我猜测只要不涉及到微积分,此方法便能发挥其价值。
此方法优点:1)能解一切几何题;2)使用简便,只需机械思维;3)节省思考时间;4)错误率低
弱点:计算量大,简单且重复。
但反复练习便可大幅提高速度。
说了这么多,最关键的问题在于,此猜想是否正确。所以我把它发了上来,让大家验证一下。书写匆忙,欢迎批评。
㈡ 高中数学解析几何怎么做求技巧!!
高中数学解析几何技巧:
1、对于直线及其方程部分
从不同的角度去归类总结。角度一:以直线的斜率是否存在进行归类,可以将直线的方程分为两类。角度二:从倾斜角α分别在[0,π/2)、α=π/2和(π/2,π)的范围内,认识直线的特点。以此为基础突破,将直线方程的五种不同的形式套入其中。
2、对于椭圆和双曲线部分
椭圆和双曲线的性质差不多,许多性质也相似,往往差一个加减号,定义性质也是要灵活运用的,直线方程与曲线方程的联立代换是必须掌握的,光学性质也可用于帮助方便解题。
3、对于线性规划部分
首先要看得懂线性规划方程组所表示的区域。对于此类问题可以采用原点法,如果满足条件,那么区域包含原点;如果原点带入不满足条件,那么代表的区域不包含原点。
4、对于圆及其方程
需要熟记圆的标准方程和一般方程分别代表的含义。对于圆部分的学习,可以拓展初中学过的一切与圆有关的知识,包括三角形的内切圆、外切圆、圆周角、圆心角等概念以及点与圆的位置关系、圆与圆的位置关系、圆的内切正多边形的特征等。
5、对于椭圆、抛物线、双曲线
可以分别从其两个定义出发,明白焦点的来源、准线方程以及相关的焦距、顶点、突破离心率、通径的概念。每种圆锥曲线存在焦点在X轴和Y轴上的情况,要分别进行掌握。
6、选择题和填空题上
做这些题目的时候可以采用一些特殊值方法,多采用定义性质解决问题,结合余弦定理和正弦定理。注意不要一开始就用直线和曲线方程的联立,计算量很大,不利于时间的利用。
㈢ 解析几何为什么计算量这么大
解析几何顾名思义,就是利用坐标来进行几何计算的,有些题目的计算量是不小。
有没有可以减少计算量的方法呢?当然有!
1、把解析几何计算与平面几何对图形的处理结合起来,也就是所谓的数形结合,有时能大大缩减计算量,保证计算结果的可靠。
2、灵活运用解析几何中的定比分点、中点等技巧。比如,已知平行四边形的三个顶点的坐标,要求第四个顶点的坐标,你会怎么作?如果不懂得通过平行四边对角线互相平分来计算,那个计算量不仅大,还会产生增根!
㈣ 怎样减少解析几何中的解题计算量
(1)A(-2,0),B(0,2), AB的中点为(-1,1),AB的斜率=1, ∴AB的垂直平分线是y-1=-(x+1),即y=-x,与直线y=x交于C(0,0), AC=2,∴圆C的方程是x^2+y^2=4.① (2)把y=kx+1代入①,得x^2+k^2x^2+2kx+1=4, 整理得(1+k^2)x^2+2kx-3=0,② 设P(x1,y1),Q(x2,y2),。
㈤ 初中几何题计算公式
几何题计算公式?几何靠思维,考画图。。貌似没有计算公式,只有代数才有计算公式。。。
㈥ 解析几何
高考数学解析几何题解题技巧
每次和同学们谈及高考数学,大家似乎都有同感:高中数学难,高考数学解析几何又是难中之难。其实不然,解析几何题目自有路径可循,方法可依。只要经过认真的准备和正确的点拨,完全可以让高考数学的解析几何压轴题变成让同学们都很有信心的中等题目。
我们先来分析一下解析几何高考的命题趋势:
(1)题型稳定:近几年来高考解析几何试题一直稳定在三(或二)个选择题,一个填空题,一个解答题上,分值约为30分左右, 占总分值的20%左右。
(2)整体平衡,重点突出:《考试说明》中解析几何部分原有33个知识点,现缩为19个知识点,一般考查的知识点超过50%,其中对直线、圆、圆锥曲线知识的考查几乎没有遗漏,通过对知识的重新组合,考查时既注意全面,更注意突出重点,对支撑数学科知识体系的主干知识,考查时保证较高的比例并保持必要深度。近四年新教材高考对解析几何内容的考查主要集中在如下几个类型:
① 求曲线方程(类型确定、类型未定);
②直线与圆锥曲线的交点问题(含切线问题);
③与曲线有关的最(极)值问题;
④与曲线有关的几何证明(对称性或求对称曲线、平行、垂直);
⑤探求曲线方程中几何量及参数间的数量特征;
(3)能力立意,渗透数学思想:如2000年第(22)题,以梯形为背景,将双曲线的概念、性质与坐标法、定比分点的坐标公式、离心率等知识融为一体,有很强的综合性。一些虽是常见的基本题型,但如果借助于数形结合的思想,就能快速准确的得到答案。
(4)题型新颖,位置不定:近几年解析几何试题的难度有所下降,选择题、填空题均属易中等题,且解答题未必处于压轴题的位置,计算量减少,思考量增大。加大与相关知识的联系(如向量、函数、方程、不等式等),凸现教材中研究性学习的能力要求。加大探索性题型的分量。
在近年高考中,对直线与圆内容的考查主要分两部分:
(1)以选择题题型考查本章的基本概念和性质,此类题一般难度不大,但每年必考,考查内容主要有以下几类:
①与本章概念(倾斜角、斜率、夹角、距离、平行与垂直、线性规划等)有关的问题;
②对称问题(包括关于点对称,关于直线对称)要熟记解法;
③与圆的位置有关的问题,其常规方法是研究圆心到直线的距离.
以及其他“标准件”类型的基础题。
(2)以解答题考查直线与圆锥曲线的位置关系,此类题综合性比较强,难度也较大。
预计在今后一、二年内,高考对本章的考查会保持相对稳定,即在题型、题量、难度、重点考查内容等方面不会有太大的变化。
相比较而言,圆锥曲线内容是平面解析几何的核心内容,因而是高考重点考查的内容,在每年的高考试卷中一般有2~3道客观题和一道解答题,难度上易、中、难三档题都有,主要考查的内容是圆锥曲线的概念和性质,直线与圆锥的位置关系等,从近十年高考试题看大致有以下三类:
(1)考查圆锥曲线的概念与性质;
(2)求曲线方程和求轨迹;
(3)关于直线与圆及圆锥曲线的位置关系的问题.
选择题主要以椭圆、双曲线为考查对象,填空题以抛物线为考查对象,解答题以考查直线与圆锥曲线的位置关系为主,对于求曲线方程和求轨迹的题,高考一般不给出图形,以考查学生的想象能力、分析问题的能力,从而体现解析几何的基本思想和方法,圆一般不单独考查,总是与直线、圆锥曲线相结合的综合型考题,等轴双曲线基本不出题,坐标轴平移或平移化简方程一般不出解答题,大多是以选择题形式出现.解析几何的解答题一般为难题,近两年都考查了解析几何的基本方法——坐标法以及二次曲线性质的运用的命题趋向要引起我们的重视.
请同学们注意圆锥曲线的定义在解题中的应用,注意解析几何所研究的问题背景平面几何的一些性质.从近两年的试题看,解析几何题有前移的趋势,这就要求考生在基本概念、基本方法、基本技能上多下功夫.参数方程是研究曲线的辅助工具.高考试题中,涉及较多的是参数方程与普通方程互化及等价变换的数学思想方法。
考试大纲这部分的变动就是(1)、简单线性规划由08年的了解提高到理解,(2)、椭圆的参数方程由08年的了解提高到理解。
04----08年,解析几何部分的命题都是“一大两小”——一个解答题两个客观题,多是以平面向量为载体,综合圆锥曲线交汇处为主干,构筑成知识网络型圆锥曲线问题,使平面向量的知识与解析几何的知识得到了很好的整合。集中体现对考生综合知识和应变能力的考查。
考查的重点落在轨迹方程、直线与圆锥曲线的位置关系,往往是通过直线与圆锥曲线方程的联立、消元,借助于韦达定理代人、向量搭桥建立等量关系。考查题型涉及的知识点问题有求曲线方程问题、参数的取值范围问题、最值问题、定值问题、直线过定点问题、对称问题等,所以我们要掌握这些问题的基本解法。
命题特别注意对思维严密性的考查,解题时需要注意考虑以下几个问题:
1、设曲线方程时看清焦点在哪条坐标轴上;注意方程待定形式及参数方程的使用。
2、直线的斜率存在与不存在、斜率为零,相交问题注意“D”的影响等。
3、命题结论给出的方式:搞清题目所给的几个小题是并列关系还是递进关系。如果前后小题各自有强化条件,则为并列关系,前面小题结论后面小题不能用;不过考题经常给出的是递进关系,有(1)、第一问求曲线方程、第二问讨论直线和圆锥曲线的位置关系,(2)第一问求离心率、第二问结合圆锥曲线性质求曲线方程,(3)探索型问题等。解题时要根据不同情况考虑施加不同的解答技巧。
4、题目条件如与向量知识结合,也要注意向量的给出形式:
(1)、直接反映图形位置关系和性质的,如•=0,=( ),λ,以及过三角形“四心”的向量表达式等;
(2)、=λ:如果已知M的坐标,按向量展开;如果未知M的坐标,按定比分点公式代入表示M点坐标。
(3)、若题目条件由多个向量表达式给出,则考虑其图形特征(数形结合)。
5、考虑圆锥曲线的第一定义、第二定义的区别使用,注意圆锥曲线的性质的应用。
6、注意数形结合,特别注意图形反映的平面几何性质。
7、解析几何题的另一个考查的重点就是学生的基本运算能力,所以解析几何考题学生普遍感觉较难对付。为此我们有必要在平常的解题变形的过程中,发现积累一些式子的常用变形技巧,如假分式的分离技巧,对称替代的技巧,构造对称式用韦达定理代入的技巧,构造均值不等式的变形技巧等,以便提升解题速度。
8、平面解析几何与平面向量都具有数与形结合的特征,所以这两者多有结合,在它们的知识点交汇处命题,也是高考命题的一大亮点.直线与圆锥曲线的位置关系问题是常考常新、经久不衰的一个考查重点,另外,圆锥曲线中参数的取值范围问题、最值问题、定值问题、对称问题等综合性问题也是高考的常考题型.解析几何题一般来说计算量较大且有一定的技巧性,需要“精打细算”,近几年解析几何问题的难度有所降低,但仍是一个综合性较强的问题,对考生的意志品质和数学机智都是一种考验,是高考试题中区分度较大的一个题目,有可能作为今年高考的一个压轴题出现.
例1已知点A(-1,0),B(1,-1)和抛物线.,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.
(1)若△POM的面积为,求向量与的夹角。
(2)试证明直线PQ恒过一个定点。
高考命题虽说千变万化,但只要认真研究考纲和近三年高考试题以及2010年的模拟试题,找出相应的一些规律,我们就大胆地猜想高考解答题命题的一些思路和趋势,指导我们后面的复习。对待高考,我们应该采取正确的态度,再大胆预测的同时,更要注重基础知识的进一步巩固,多做一些简单的综合练习,提高自己的解题能力.
是否可以解决您的问题?