Ⅰ 这道题用逐点比较法插补怎么计算啊
逐点比较法又称代数运算法或醉步法,其基本原理是每次仅向一个坐标轴输出一个进给脉冲,而每走一步都要通过偏差函数计算,判断偏差的瞬时坐标与规定加工轨迹之间的偏差,然后决定下一步的进给方向。
由其插补原理可知数控机床的运动部件每走一步都要经过以下四个节拍:
第一节拍:偏差判别,判别刀具当前位置相对于给定轮廓的偏离情况,并以此决定刀具的进给方向。
第二节拍:坐标进给,根据偏差判别的结果,控制刀具向相应坐标轴进给一步#使加工点向给定轮廓靠拢,减小偏差。
第三节拍:偏差计算,刀具进给一步后#计算新的加工点与给定轮廓之间的偏差,为下一步偏差判别做准备。
第四节拍:终点判别,判断刀具是否到达被加工零件的终点,若到达终点,则结束插补,否则继续插补,如此不断循环以上四个节拍就可加工出所要求的曲线。
Ⅱ 插补法是什么
插补法是指插补法计算,就是对数控系统输入基本数据(如直线的起点、终点坐标,圆弧的起点、终点、圆心坐标等),运用一定的算法计算,根据计算结果向相应的坐标发出进给指令。
对应着每一进给指令,机床在相应的坐标方向上移动一定的距离,从而加工出工件所需的轮廓形状。插补法运算的任务就是在已知加工轨迹曲线的起点和终点间进行“数据点的密化”。
(2)插补计算方法扩展阅读:
原理:在轮廓加工中,刀具的轨迹必须严格准确地按零件轮廓曲线运动,插补运算的任务就是在已知加工轨迹曲线的起点和终点间进行“数据点的密化”。
具体是在每个插补周期(极短时间,一般为毫秒级)内根据指令、进给速度计算出一个微小直线段的数据,刀具沿着微小直线段运动,经过若干个插补周期后,刀具从起点运动到终点,完成这段轮廓的加工。
Ⅲ 插补法怎么算
插补法又称为内插法,可以用于计算资金价值系数中的利率和期数。
(1)“内插法”的原理是根据等比关系建立一个方程,然后解方程计算得出所要求的数据。
例如:假设与A1对应的数据是B1,与A2对应的数据是B2,A介于A1和A2之间,已知与A对应的数据是B,则可以按照(A1-A)/(A1-A2)=(B1-B)/(B1-B2)计算得出A的数值。
(2)仔细观察一下这个方程会看出一个特点,即相对应的数据在等式两方的位置相同。例如:A1位于等式左方表达式的分子和分母的左侧,与其对应的数字B1位于等式右方的表达式的分子和分母的左侧。
(3)还需要注意的一个问题是:如果对A1和A2的数值进行交换,则必须同时对B1和B2的数值也交换,否则,计算得出的结果一定不正确。
Ⅳ 步进电机控制器的圆弧插补计算方法
圆弧插补的定义是给出两端点间的插补数字信息,借此信息控制刀具与工件的相对运动,使其按规定的圆弧加工出理想曲面的一种插补方式。它所属的学科是机械工程,切削加工工艺与设备;自动化制造系统
圆弧插补(Circula : Interpolation)这是一种插补方式,在此方式中,根据两端点间的插补数字信息,计算出逼近实际圆弧的点群,控制刀具沿这些点运动,加工出圆弧曲线。
X,Y轴以插补方式,通过设定的半径R及合成的法相速度值逆时针时针方向做拟合出圆弧曲线。其中参数X,Y,表示的是圆弧终点相对于起点的坐标,R通过正负值来确定所画曲线为劣弧(小于180°)优弧(大于180°)。
例:控制器上电,快速移动X10,Y8的位置A点,然后Z慢速向下移动-6,然后逆时针方向画圆弧至B点,半径为5,圆弧为整圆的1/3,然后Z向上移动6,然后X,Y回程序零。
Ⅳ 插补算法常用的有哪两种
圆弧插补算法,直线插补算法
Ⅵ 什么是数控插补原理
数控插补原理:数控车床的运动控制中,工作台(刀具)X、Y、Z轴的最小移动单位是一个脉冲当量。因此,刀具的运动轨迹是具有极小台阶所组成的折线(数据点密化)。
例如,用数控车床加工直线OA、曲线OB,刀具是沿X轴移动一步或几步(一个或几个脉冲当量Dx),再沿Y轴方向移动一步或几步(一个或几个脉冲当量Dy),直至到达目标点。从而合成所需的运动轨迹(直线或曲线)。
数控系统根据给定的直线、圆弧(曲线)函数,在理想的轨迹上的已知点之间,进行数据点密化,确定一些中间点的方法,称为插补。插补分类:一个零件的轮廓往往是多种多样的,有直线,有圆弧,也有可能是任意曲线,样条线等.数控机床的刀具往往是不能以曲线的实际轮廓去走刀的,而是近似地以若干条很小的直线去走刀,走刀的方向一般是x和y方向。插补方式有:直线插补,圆弧插补,抛物线插补,样条线插补等。
1、直线插补直线插补(Llne Interpolation)这是车床上常用的一种插补方式,在此方式中,两点间的插补沿着直线的点群来逼近,沿此直线控制刀具的运动。所谓直线插补就是只能用于实际轮廓是直线的插补方式(如果不是直线,也可以用逼近的方式把曲线用一段线段去逼近,从而每一段线段就可以用直线插补了).首先假设在实际轮廓起始点处沿x方向走一小段(一个脉冲当量),发现终点在实际轮廓的下方,则下一条线段沿y方向走一小段,此时如果线段终点还在实际轮廓下方,则继续沿y方向走一小段,直到在实际轮廓上方以后,再向x方向走一小段,依次循环类推.直到到达轮廓终点为止.这样,实际轮廓就由一段段的折线拼接而成,虽然是折线,但是如果我们每一段走刀线段都非常小(在精度允许范围内),那么此段折线和实际轮廓还是可以近似地看成相同的曲线的--------这就是直线插补.
2、圆弧插补圆弧插补(Circula : Interpolation)这是一种插补方式,在此方式中,根据两端点间的插补数字信息,计算出逼近实际圆弧的点群,控制刀具沿这些点运动,加工出圆弧曲线。
3、复杂曲线实时插补算法传统的 CNC 只提供直线和圆弧插补,对于非直线和圆弧曲线则采用直线和圆弧分段拟合的方法进行插补。这种方法在处理复杂曲线时会导致数据量大、精度差、进给速度不均、编程复杂等一系列问题,必然对加工质量和加工成本造成较大的影响。许多人开始寻求一种能够对复杂的自由型曲线曲面进行直接插补的方法。近年来,国内外的学者对此进行了大量的深入研究,由此也产生了很多新的插补方法。如A(AKIMA)样条曲线插补、C(CUBIC)样条曲线插补、贝塞尔(Bezier)曲线插补、PH(Pythagorean-Hodograph)曲线插补、B 样条曲线插补等。由于 B 样条类曲线的诸多优点,尤其是在表示和设计自由型曲线曲面形状时显示出的强大功能,使得人们关于自由空间曲线曲面的直接插补算法的研究多集中在它身上。
Ⅶ 逐点比较法插补的四个节拍是怎样的呢
逐点比较插补计算法,即每走一不都要和给顶轨迹上的坐标值进行一次比较,视该点在给定轨迹的上方或下方或在给定轨迹的里面或外面,从而决定下一不的进给方向,使之趋近加工的轨迹。
四节拍可概括为(1)偏差判别。(2)坐标进给。(3)新偏差计算。(4)终点判别。
假设直线上有一坐标点(Xm,Ym)和终点坐标(Xe,Ye)偏差判别Fm。插补开始从起点出发,当Fm≥0时,应沿 +X方向走;当Fm<0时,则应沿+Y方向走一不;当两个方向的步数和终点坐标(Xe,Ye)值相等时,发出终点到达信号,停止插补。
Ⅷ 什么是插补
插补 (Interpolation)
在数控机床中,刀具不能严格地按照要求加工的曲线运动,只能用折线轨迹逼近所要加工的曲线。
插补(interpolation)定义:
机床数控系统依照一定方法确定刀具运动轨迹的过程。也可以说,已知曲线上的某些数据,按照某种算法计算已知点之间的中间点的方法,也称为“数据点的密化”。
数控装置根据输入的零件程序的信息,将程序段所描述的曲线的起点、终点之间的空间进行数据密化,从而形成要求的轮廓轨迹,这种“数据密化”机能就称为“插补”。
插补计算就是数控装置根据输入的基本数据,通过计算,把工件轮廓的形状描述出来,边计算边根据计算结果向各坐标发出进给脉冲,对应每个脉冲,机 床在响应的坐标方向上移动一个脉冲当量的距离,从而将工件加工出所需要轮廓的形状。
Ⅸ 数控系统常用的插补方法有哪些
常用的插补方法有:逐点比较法、数字积分法以及数据采样插补法。
插补(Interpolation),即机床数控系统依照一定方法确定刀具运动轨迹的过程。也可以说,已知曲线上的某些数据,按照某种算法计算已知点之间的中间点的方法,也称为“数据点的密化”;数控装置根据输入的零件程序的信息,将程序段所描述的曲线的起点、终点之间的空间进行数据密化,从而形成要逐点比较法、数字积分法以及数据采样插补法求的轮廓轨迹,这种“数据密化”机能就称为“插补”。