导航:首页 > 计算方法 > 勾股定理三角形计算方法

勾股定理三角形计算方法

发布时间:2022-08-31 01:33:41

1. 三角形勾股定理公式是什么

a²+b²=c²。

勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么勾股定理的公式为a²+b²=c²。

勾股定理的应用

工程技术人员用勾股定理比较多,比如农村房屋的屋顶构造,就可以用勾股定理来计算,设计工程图纸也要用到勾股定理,在求与圆、三角形有关的数据时,多数可以用勾股定理。

物理上也有广泛应用,例如求几个力,或者物体的合速度,运动方向古代也是大多应用于工程,例如修建房屋、修井、造车等等。

我国战国时期另一部古籍《路史后记十二注》中就有这样的记载:禹治洪水决流江河,望山川之形,定高下之势,除滔天之灾,使注东海,无漫溺之患,此勾股之所系生也。

这段话的意思是说:大禹为了治理洪水,使不决流江河,根据地势高低,决定水流走向,因势利导,使洪水注入海中,不再有大水漫溺的灾害,是应用勾股定理的结果。

在做木工活时,要是有大块的板材要定直角,就用勾股定理。角尺太小,在大板上画的直角误差大。在做焊工活时,做大的框架,有一定要直角的也是用勾股定理。比如说我要一个直角,就取一个直角边3米,一个直角边4米,让斜边有5米,那这个角就是直角了。

2. 三角形勾股定理怎么

勾股定理:在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。例:a的边长为3,b的边长为4,则我们可以利用勾股定理计算出c的边长。

勾股定理怎么算三角形的高

①有一直角三角形ABC,设∠C=90°,作CD⊥AB,垂足为D.并设AD=x.

∵CD^2=AC^2-AD^2=BC^2-BD^2

∴AC^2-x^2=BC^2-(BC-x)^2

求得AD的长后,算出CD的长,即三角形斜边上的高.

②有一直角三角形ABC,设∠C=90°,做CD⊥AB,垂足为D.

S△ABC=(AC*BC)/2=(CD*AB)/2.

算出CD的长,即三角形斜边上的高.

a²+b²=c²

例子:以直角三角形为例,a的边长为3,b的边长为4,则我们可以利用勾股定理计算出c的边长。

由勾股定理得,a²+b²=c²→3²+4²=c²

即,9+16=25=c²

c=√25=5

所以我们可以利用勾股定理计算出c的边长为5。

3. 勾股定理怎么算。是什么公式

勾股定理计算:直角三角形的两条直角边的平方和等于斜边的平方。a²+b²=c²。

勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

(3)勾股定理三角形计算方法扩展阅读:

勾股定理意义

1、勾股定理的证明是论证几何的发端;

2、勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理;

3、勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解;

4、勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理;

5、勾股定理是欧氏几何的基础定理,并有巨大的实用价值.这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用.1971年5月15日,尼加拉瓜发行了一套题为“改变世界面貌的十个数学公式”邮票,这十个数学公式由着名数学家选出的,勾股定理是其中之首。

4. 勾股定理怎么计算

勾股定理,直角三角形的两条直角边的平方和等于斜边的平方.

A²+B²=C²

C=√(A²+B²)

√(120²+90²)=√22500=√150²=150

例如直角三角形 的三条边是3(直角边)、4(直角边)、5(斜边)

3²+4²=5²

5=√(3²+4²)=√5²=5

(4)勾股定理三角形计算方法扩展阅读

勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。

参考资料勾股定理_网络

5. 勾股定理怎么计算

勾股定理公式是a的平方加上b的平方等于c的平方。如果直角三角形两直角边分别为a,b,斜边为C,那么公式就是: a^2+b^2=c^2。

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。

(5)勾股定理三角形计算方法扩展阅读:

勾股定理简介:

勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。

在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

网络勾股定理

6. 三角形勾股定理公式是什么

勾股定理仅适用于直角三角形。勾股定理表达式:a²+b²=c²。

勾股定理的公式是:在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和.如果直角三角形两直角边分别为a、b,斜边为c,那么a的平方+b的平方=c的平方。

意义

1、勾股定理的证明是论证几何的发端。

2、勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理。

3、勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解。

4、勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理。

5、勾股定理是欧氏几何的基础定理,并有巨大的实用价值。这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用。

7. 勾股定理怎么算。是什么公式

勾股定理:在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。

(如下图所示,即a² + b² = c²)

例子:

以上图的直角三角形为例,a的边长为3,b的边长为4,则我们可以利用勾股定理计算出c的边长。

由勾股定理得,a + b = c → 3 +4 = c

即,9 + 16 = 25 = c²

c =√25 = 5

所以我们可以利用勾股定理计算出c的边长为5。

勾股定理的逆定理:

勾股定理的逆定理是判断三角形为钝角、锐角或直角的一个简单的方法,其中AB=c为最长边:

如果a² + b² = c²,则△ABC是直角三角形。

如果a² + b² > c²,则△ABC是锐角三角形(若无先前条件AB=c为最长边,则该式的成立仅满足∠C是锐角)。

如果a² + b² < c²,则△ABC是钝角三角形。

8. 勾股定理计算方法

勾股定理,直角三角形的两条直角边的平方和等于斜边的平方。

A²+B²=C²

C=√(A²+B²)

√(120²+90²)=√22500=√150²=150

例如直角三角形 的三条边是3(直角边)、4(直角边)、5(斜边)

3²+4²=5²

5=√(3²+4²)=√5²=5

(8)勾股定理三角形计算方法扩展阅读:

定理用途

已知直角三角形两边求解第三边,或者已知三角形的三边长度,证明该三角形为直角三角形或用来证明该三角形内两边垂直。利用勾股定理求线段长度这是勾股定理的最基本运用。

意义

1、勾股定理的证明是论证几何的发端;

2、勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理;

3、勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解;

4、勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理;

5、勾股定理是欧氏几何的基础定理,并有巨大的实用价值.这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用。

1971年5月15日,尼加拉瓜发行了一套题为“改变世界面貌的十个数学公式”邮票,这十个数学公式由着名数学家选出的,勾股定理是其中之首。

9. 勾股定理是怎么算的

勾股定理指直角三角形的两条直角边的平方和等于斜边的平方,用数学语言表达:a²+b²=c²。

证明:

设△ABC中,∠C=90°,由余弦定理c2=a2+b2-2abcosC,

因为∠C=90°,所以cosC=0。

所以a2+b2=c2。

(9)勾股定理三角形计算方法扩展阅读

勾股定理应用

勾股定理的逆定理是判断三角形为钝角、锐角或直角的一个简单的方法,其中AB=c为最长边:

1、如果a² + b² = c²,则△ABC是直角三角形。

2、如果a² + b² > c²,则△ABC是锐角三角形(若无先前条件AB=c为最长边,则该式的成立仅满足∠C是锐角)。

3、如果a² + b² < c²,则△ABC是钝角三角形。

10. 三角形用勾股定理怎么计算

勾股定理仅适用于直角三角形。勾股定理表达式:a²+b²=c²

勾股定理的公式是:在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和.如果直角三角形两直角边分别为a、b,斜边为c,那么a的平方+b的平方=c的平方。

定理用途

已知直角三角形两边求解第三边,或者已知三角形的三边长度,证明该三角形为直角三角形或用来证明该三角形内两边垂直。利用勾股定理求线段长度这是勾股定理的最基本运用。

阅读全文

与勾股定理三角形计算方法相关的资料

热点内容
域故障分析方法 浏览:74
洗衣机使用方法的视频 浏览:512
婴幼儿皮炎怎么治疗方法 浏览:944
广电路由器连接电视方法 浏览:202
消防编码器的使用方法 浏览:721
如何正确方法画出粽子 浏览:645
用什么方法可以查出输尿管癌症 浏览:295
如何止住流泪的方法 浏览:963
怎么发制海参的方法 浏览:210
什么叫分步说明的方法 浏览:429
用哪些方法可以预防糖尿病 浏览:459
甲亢治疗方法比较 浏览:573
分数计算方法如何运用 浏览:493
ipadqq麦克风设置在哪里设置方法 浏览:659
免疫缺陷病治疗方法 浏览:855
脚尖地面上组合训练方法 浏览:433
海鲜对虾的食用方法 浏览:386
如何理解决策力的方法 浏览:787
颈肩痛的最好锻炼方法骨科医生 浏览:796
钢的热处理的方法有哪些 浏览:850