导航:首页 > 计算方法 > 行列阵计算方法

行列阵计算方法

发布时间:2022-08-29 21:27:57

‘壹’ 行列式的计算方法总结

第一、行列式的计算利用的是行列式的性质,而行列式的本质是一个数字,所以行列式的变化都是建立在已有性质的基础上的等量变化,改变的是行列式的“外观”。

第二、行列式的计算的一个基本思路就是通过行列式的性质把一个普通的行列式变化成为一个我们可以口算的行列式(比如,上三角,下三角,对角型,反对角,两行成比例等)

第三、行列式的计算最重要的两个性质:

(1)对换行列式中两行(列)位置,行列式反号

(2)把行列式的某一行(列)的倍数加到另一行(列),行列式不变

对于(1)主要注意:每一次交换都会出一个负号;换行(列)的主要目的就是调整0的位置,例如下题,只要调整一下第一行的位置,就能变成下三角。

(1)行列阵计算方法扩展阅读

矩阵的加法与减法运算将接收两个矩阵作为输入,并输出一个新的矩阵。矩阵的加法和减法都是在分量级别上进行的,因此要进行加减的矩阵必须有着相同的维数。

为了避免重复编写加减法的代码,先创建一个可以接收运算函数的方法,这个方法将对两个矩阵的分量分别执行传入的某种运算。

‘贰’ 行列式的计算技巧

1、利用行列式定义直接计算:行列式是由排成n阶方阵形式的n²个数aij(i,j=1,2,...n)确定的一个数,其值为n项之和。2、利用行列式的性质计算。3、化为三角形行列式计算:若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。因此化三角形是行列式计算中的一个重要方法。
行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或|A|。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。

行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在n维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。
①行列式A中某行(或列)用同一数k乘,其结果等于kA。

②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。

④行列式A中两行(或列)互换,其结果等于-A。⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。
例1计算三阶行列式

解 但是对于四阶或者以上的行列式,不建议采用定义,最常采用的是行列式的性质以及降价法来做。但在此之前需要记忆一些常见行列式形式。以便计算。

计算上三角形行列式 下三角形行列式 对角行列式

二、用行列式的性质计算 1、记住性质,这是计算行列式的前提 将行列式的行与列互换后得到的行列式,称为的转置行列式,记为或,即若 则 .

性质1 行列式与它的转置行列式相等, 即

注 由性质1知道,行列式中的行与列具有相同的地位,行列式的行具有的性质,它的列也同样具有.

性质2 交换行列式的两行(列),行列式变号.

推论 若行列式中有两行(列)的对应元素相同,则此行列式为零.

性质3 用数乘行列式的某一行(列), 等于用数乘此行列式, 即

第行(列)乘以,记为(或).

推论1 行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面.

推论2 行列式中若有两行(列)元素成比例,则此行列式为零.

性质4 若行列式的某一行(列)的元素都是两数之和, 例如,

.

则 .

性质5 将行列式的某一行(列)的所有元素都乘以数后加到另一行(列)对应位置的元素上, 行列式不变.

注: 以数乘第行加到第行上,记作; 以数乘第列加到第列上,记作.

2、利用“三角化”计算行列式

计算行列式时,常用行列式的性质,把它化为三角形行列式来计算. 例如化为上三角形行列式的步骤是:

如果第一列第一个元素为0, 先将第一行与其它行交换使得第一列第一个元素不为0; 然后把第一行分别乘以适当的数加到其它各行,使得第一列除第一个元素外其余元素全为0;

‘叁’ 三阶行列式计算方法

三阶行列式可用对角线法则:

D = a11a22a33 + a12a23a31 + a13a21a32- a13a22a31 - a12a21a33 - a11a23a32。

矩阵A乘矩阵B,得矩阵C,方法是A的第一行元素分别对应乘以B的第一列元素各元素,相加得C11,A的第一行元素对应乘以B的第二行各元素,相加得C12,C的第二行元素为A的第二行元素按上面方法与B相乘所得结果,N阶矩阵都是这样乘,A的列数要与B的行数相等。

三阶行列式性质:

性质1:行列式与它的转置行列式相等。

性质2:互换行列式的两行(列),行列式变号。

推论:如果行列式有两行(列)完全相同,则此行列式为零。

性质3:行列式的某一行(列)中所有的元素都乘以同一数k,等于用数k乘此行列式。

推论:行列式中某一行(列)的所有元素的公因子可以提到行列式符号的外面。

性质4:行列式中如果有两行(列)元素成比例,则此行列式等于零。

性质5:把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。

‘肆’ 行列式是如何计算的

1、利用行列式定义直接计算:

行列式是由排成n阶方阵形式的n²个数aij(i,j=1,2,...,n)确定的一个数,其值为n!项之和。

(4)行列阵计算方法扩展阅读:

行列式的基本性质:

(1)行列式A中某行(或列)用同一数k乘,其结果等于kA。

(2)行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

(3)若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。

(4)行列式A中两行(或列)互换,其结果等于-A。 ⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。

‘伍’ 行列式计算方法

行列式的计算方法:

1、利用行列式定义直接计算:行列式是由排成n阶方阵形式的n²个数aij确定的一个数,其值为n!项之和。

行列式的重要性质:

如果行列式的值为0,则矩阵是奇异矩阵,也就是矩阵没有逆。将某一行的乘以某个数加到另一行上,行列式的值不会变。这一条是我们计算行列式的重要方法,实际上,在很多计算软件中,都是先进行消元过程将矩阵转化为上三角矩阵,然后再进行计算。

‘陆’ 计算行列式常用的7种方法

(1)行列式和他的转置行列式相等。

(2)变换一个行列式的两行(或两列),行列式改变符号 即变为之前的相反数。

(3)如果一个行列式有两行(列)完全相同,那么这个行列式等于零。

(4)一个行列式中的某一行(列)所有元素的公因子可以提到行列式符号的外面。

(5)如果一个行列式中有一行(列)的元素全部是零,那么这个行列式等于零。

(6)如果一个行列式有两行(列)的对应元素成比例,那么这个行列式等于零。

(7)把行列式的某一行(列)的元素乘以同一个数后加到另一行(列)的对应元素上,行列式不变。

根据行列式的特点,适当变形(利用行列式的性质——如:提取公因式;互换两行(列);一行乘以适当的数加到另一行(列)去;把所求行列式化成已知的或简单的形式。其中范德蒙行列式就是一种。这种变形法是计算行列式最常用的方法。

(6)行列阵计算方法扩展阅读:

①行列式A中某行(或列)用同一数k乘,其结果等于kA。

②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。

④行列式A中两行(或列)互换,其结果等于-A。

⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。

‘柒’ 行列式的计算方法总结是什么

最直接的就是按行按列展开 3阶的还行 阶数高了 就麻烦了 主要方法就是 比如按行展开的 就是这一行中的每一个元素乘以对应的代数余子式最后再加起来
第二种方法呢 就是根据行列式的性质来做,有如下性质:
(1)行列式和他的转置行列式相等
(2)变换一个行列式的两行(或两列),行列式改变符号 即变为之前的相反数
(3)如果一个行列式有两行(列)完全相同,那么这个行列式等于零
(4)一个行列式中的某一行(列)所有元素的公因子可以提到行列式符号的外面
(5)如果一个行列式中有一行(列)的元素全部是零,那么这个行列式等于零
(6)如果一个行列式有两行(列)的对应元素成比例,那么这个行列式等于零
(7)把行列式的某一行(列)的元素乘以同一个数后加到另一行(列)的对应元素上,行列式不变
最长用的是性质2,4,7

‘捌’ 行列式怎么

线性代数行列式的计算技巧: 1.利用行列式定义直接计算例1 计算行列式 解 Dn中不为零的项用一般形式表示为 该项列标排列的逆序数t(n-1 n-2?1n)等于,故 2.利用行列式的性质计算例2 一个n阶行列式的元素满足 则称Dn为反对称行列式,证明:奇数阶反对称行列式为零. 证明:由 知,即 故行列式Dn可表示为 由行列式的性质 当n为奇数时,得Dn =-Dn,因而得Dn = 0.。 3.化为三角形行列式若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。因此化三角形是行列式计算中的一个重要方法。 4.降阶法降阶法是按某一行(或一列)展开行列式,这样可以降低一阶,更一般地是用拉普拉斯定理,这样可以降低多阶,为了使运算更加简便,往往是先利用列式的性质化简,使行列式中有较多的零出现,然后再展开。 5.递推公式法递推公式法:对n阶行列式Dn找出Dn与Dn-1或Dn与Dn-1, Dn-2之间的一种关系——称为递推公式(其中Dn, Dn-1, Dn-2等结构相同),再由递推公式求出Dn的方法称为递推公式法。 6.利用范德蒙行列式 7.加边法(升阶法)加边法(又称升阶法)是在原行列式中增加一行一列,且保持原行列式不变的方法。 8.数学归纳法 9.拆开法把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,使问题简化以利计算。

阅读全文

与行列阵计算方法相关的资料

热点内容
偏瘫的稳定训练方法 浏览:817
架点分析与使用方法 浏览:608
菜鸟写作技巧和方法 浏览:762
闲置快速卖出去的方法 浏览:549
电脑用电压力锅做蛋糕的方法 浏览:5
建行随芯用使用方法 浏览:282
眼角的皱纹用什么方法可以弄掉 浏览:930
汽车螺纹测量方法 浏览:396
分析企业财务数据的方法 浏览:844
解决好三农问题的方法 浏览:775
小弹力带的腿部训练方法 浏览:872
eminence使用方法 浏览:185
统计方法与资料分析课 浏览:419
如何挤奶方法视频教程 浏览:81
荣耀6电量提醒设置在哪里设置方法 浏览:111
黄褐斑国外治疗方法 浏览:618
煎包机的制作方法视频 浏览:840
电脑怎么清理桌面垃圾最快方法 浏览:608
轿车轮胎性能检测方法及其标准 浏览:439
pc肌锻炼方法教学视频 浏览:999