Ⅰ 三重积分计算
被积函数推广到三元函数,切条法(
先z次y后x
)
注意
用完全类似的方法可把三重积分化成其它次序下的三次积分,
则一定可积
由定义可知
三重积分与二重积分有着完全相同的性质
三重积分的物理背景
以
f
(
x
这里有一个幻灯片
其实,得平面区域
⑵穿越法定限.
二,三角形,用截面法较为方便,
就是截面的面积,如截面为圆,椭圆,就得到三重积分的定义
其中
dv
称为体积元,三重积分可化成三次积分进行计算
具体可分为先单后重和先重后单
①先单后重
——也称为先一后二,其它术语与二重积分相同
若极限存在,则称函数可积
若函数在闭区域上连续,就是先求关于某两个变量的二重积分再求关于另一个变量的定积分
若
f(x,y,z)
在
上连续
介于两平行平面
z
=
c1
,
z
=
c2
(c1
<
c2
)
之间
用任一平行且介于此两平面的平面去截
得区域
则
②先重后单
易见,若被积函数与
x
,
y
无关,或二重积分容易计算时,y)作平行于
z
轴的直线
交边界曲面于两点,各边界面平行于坐标面
解
将
投影到xoy面得D,它是一个矩形
在D内任意固定一点(x
,穿入点—下限,穿出点—上限
对于二重积分,y)
例2
计算
其中
是三个坐标面与平面
x
+
y
+
z
=1
所围成的区域
D
x
y
z
o
解
画出区域D
解
除了上面介绍的先单后重法外,利用先重后单法或切片法也可将三重积分化成三次积分
先重后单,我们已经介绍过化为累次积分的方法
例1
将
化成三次积分
其中
为长方体,其竖坐标为
l
和
m
(l
<
m)
o
x
y
z
m
l
a
b
c
d
D
.(x,
y,
z
)
为体密度的空间物体的质量
下面我们就借助于三重积分的物理背景来讨论其计算方法.
化三次积分的步骤
⑴投影,在直角坐标系中的计算法
如果我们用三族平面
x
=常数,y
=常数,
z
=常数对空间区域进行分割那末每个规则小区域都是长方体
其体积为
故在直角坐标系下的面积元为
三重积分可写成
和二重积分类似,三重积分的概念
将二重积分定义中的积分区域推广到空间区域,三重积分,就是把一重积分和二重积分的扩展
三重积分及其计算
一
Ⅱ 高数。三重积分怎么求。总结下方法。详细讲解。
分直角坐标,直角坐标,柱坐标,球坐标。
直角坐标有两种方法:一是化为三次积分;另一种是先重后单。
柱坐标:遇到积分域是圆柱;旋转抛物面;圆锥面与平面围成区域一般用柱坐标。
球坐标:遇到积分域是球域,圆锥面与球面围成区域一般用球坐标。
Ⅲ 二重积分,三重积分的计算方法一般有哪几种
二重积分一般有直接计算和极坐标计算两种方法~
三重积分一般有直接计算,柱坐标和极坐标三种方法,积分技巧有先一后二或者先二后一两种技巧~
Ⅳ 三重积分的求法
一共有三种类型
(1)直角坐标计算三重积分。
已知体积的x,y,z各各范围
作法:
1 投影到xy(或xz,yz),这时先计算z, x y 已知,用x,y 表示z.
2 计算x,y,用X型,或Y型.(前面已经写过博客)
(2)用柱坐标计算。
有三项
1 角度a
2 r x=pcosa y=psina r的取值范围,联立@1 z=x+y @2 z=ax^2+by ,求出x^2+y^2=r(r已知)。
3 z z的范围用r表示联立两个z= z= 求出x^2+y^2=r,z用r表示。
Ⅳ 三重积分的计算方法及经典例题
三重积分的计算方法:
⑴先一后二法投影法,先计算竖直方向上的一竖条积分,再计算底面的积分。
①区域条件:对积分区域Ω无限制;
②函数条件:对f(x,y,z)无限制。
⑵先二后一法(截面法):先计算底面积分,再计算竖直方向上的积分。
①区域条件:积分区域Ω为平面或其它曲面(不包括圆柱面、圆锥面、球面)所围成
②函数条件:f(x,y)仅为一个变量的函数。
示例:
设Ω为空间有界闭区域,f(x,y,z)在Ω上连续
(1)如果Ω关于xOy(或xOz或yOz)对称,且f(x,y,z)关于z(或y或x)为奇函数,则:
(2)如果Ω关于xOy(或xOz或yOz)对称,Ω1为Ω在相应的坐标面某一侧部分,且f(x,y,z)关于z(或y或x)为偶函数,则:
(3)如果Ω与Ω’关于平面y=x对称,则:
(5)三重积分的计算方法及坐标扩展阅读
设三元函数f(x,y,z)在区域Ω上具有一阶连续偏导数,将Ω任意分割为n个小区域,每个小区域的直径记为rᵢ(i=1,2,...,n),体积记为Δδᵢ,||T||=max{rᵢ},在每个小区域内取点f(ξᵢ,ηᵢ,ζᵢ);
作和式Σf(ξᵢ,ηᵢ,ζᵢ)Δδᵢ,若该和式当||T||→0时的极限存在且唯一(即与Ω的分割和点的选取无关),则称该极限为函数f(x,y,z)在区域Ω上的三重积分,记为∫∫∫f(x,y,z)dV,其中dV=dxdydz。
Ⅵ 怎样计算三重积分尽量通俗易懂。
其实,三重积分,就是把一重积分和二重积分的扩展
三重积分及其计算
一,三重积分的概念
将二重积分定义中的积分区域推广到空间区域,被积函数推广到三元函数,就得到三重积分的定义
其中 dv 称为体积元,其它术语与二重积分相同
若极限存在,则称函数可积
若函数在闭区域上连续, 则一定可积
由定义可知
三重积分与二重积分有着完全相同的性质
三重积分的物理背景
以 f ( x, y, z ) 为体密度的空间物体的质量
下面我们就借助于三重积分的物理背景来讨论其计算方法.
二,在直角坐标系中的计算法
如果我们用三族平面 x =常数,y =常数, z =常数对空间区域进行分割那末每个规则小区域都是长方体
其体积为
故在直角坐标系下的面积元为
三重积分可写成
和二重积分类似,三重积分可化成三次积分进行计算
具体可分为先单后重和先重后单
Ⅶ 高数中三重积分如何计算
三重积分确实比较难的
常见的有直角坐标系下计算这个 还有极坐标也可以来计算三重积分
Ⅷ 三重积分的计算方法 三重积分怎么计算
直角坐标系法,适用于被积区域Ω不含圆形的区域,且要注意积分表达式的转换和积分上下限的表示方法:
1、先一后二法投影法,先计算竖直方向上的一竖条积分,再计算底面的积分。
区域条件:对积分区域Ω无限制;
函数条件:对f(x,y,z)无限制。
2、先二后一法(截面法):先计算底面积分,再计算竖直方向上的积分。
区域条件:积分区域Ω为平面或其它曲面(不包括圆柱面、圆锥面、球面)所围成
函数条件:f(x,y)仅为一个变量的函数。