Ⅰ 六年级简便计算的窍门和技巧
1.乘法分配律,如果可以简便的括号里加某数减某数,括号外乘某数就把里面的算式拆开,分别与外面的那个数相乘(外面的也可以是乘多个数)
2.上述做法在除法里也可以应用,但是先要把外面的除某数改成乘以这个数的倒数(这里的知识点是六年级上册的分数除法)
3.乘法交换律,如果是乘法的话,可以试一试交换分数的分子或分母,除法的话,也可以变成它的倒数试一下(在分数乘法中交换分数的分子或者分母不改变积的大小)
4.乘法分配律的逆运算,看算式中有没有相同的因数,注意是乘法组,有的话可以把另外两个不同的因数加或减起来(这里用括号括上,并且注意两组乘法算式之间是加还是减)
5.上一条说的也有一种情况,就是会有一个单独的数存在(注意这里单独的数指的是他不与任何数相乘,但是他却是另外两组或一组乘法算式的那个公因数)这时我们把它看作是乘以了一,也可以括在括号里进行计算
6.还有就是除了乘法分配律,另外的乘法交换律和乘法结合律也可以在分数乘法计算中应用(当然,加法交换律和加法结合律也是可以的),看哪里可以约分,就把他们两个移动到一起计算,注意这里是不是平级运算,不是的话不可以
Ⅱ 能告诉我一至六年级数学计算公式吗
小学数学定义定理公式
定义定理公式
三角形的面积=底×高÷2。 公式 S= a×h÷2
正方形的面积=边长×边长 公式 S= a×a
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高 公式:V=abh
长方体(或正方体)的体积=底面积×高 公式:V=abh
正方体的体积=棱长×棱长×棱长 公式:V=aaa
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
单位换算
(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米
(4)1吨=1000千克 1千克= 1000克= 1公斤 = 1市斤
(5)1公顷=10000平方米 1亩=666.666平方米
(6)1升=1立方分米=1000毫升 1毫升=1立方厘米
数量关系计算公式方面
1.单价×数量=总价
2.单产量×数量=总产量
3.速度×时间=路程
4.工效×时间=工作总量
小学数学定义定理公式(二)
一、算术方面
1.加法交换律:两数相加交换加数的位置,和不变。
2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第
三个数相加,和不变。
3.乘法交换律:两数相乘,交换因数的位置,积不变。
4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5。
6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。
7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8.方程式:含有未知数的等式叫方程式。
9.一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15.分数除以整数(0除外),等于分数乘以这个整数的倒数。
16.真分数:分子比分母小的分数叫做真分数。
17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18.带分数:把假分数写成整数和真分数的形式,叫做带分数。
19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20.一个数除以分数,等于这个数乘以分数的倒数。
21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
Ⅲ 六年级下册简便计算是怎么样的
巧算过程例子解析83×18+18×17
解题过程:
83×18+18×17
=(83+17)×18
=100×18
=1800
数学简便计算方法:
1、加法交换律:a+b=b+a两个加数交换位置,和不变,这叫做加法交换律。
2、加法结合律:(a+b)+c=a+(b+c)先把前两个数相加或者先把后两个数相加,和不变,这叫做加法结合律。
3、乘法交换律:a×b=b×a交换两个因数的位置,积不变,这叫做乘法交换律。
4、乘法结合律:(a×b)×c=a×(b×c)或a×b×c=a×(b×c)先把前两个数相乘或者先把后两个数相乘,积不变,这叫做和乘法结合律。
5、乘法分配律:(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c乘法分配律的逆运用:a×c+a×b=(a+b)×c或a×c-b×c=(a-b)×c两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。
Ⅳ 六年级简便运算的技巧和方法
1五年级数学简便方法计算
一般在计算中,题干的要求是:能简算的要简算。如果式子中有分母相同的分数,结合起来可以凑整或者可以口算,那么可以通过交换律和结合律将这样的分数放在一起。但是要特别注意去括号和加括号时,只有在括号前面是“-”号时变号。当同学们不肯定时,请勿简算,按照运算顺序(①只有加减,按照从左到右的顺序计算②有小括号的,先计算小括号里面的)进行计算即可。
2五年级数学简便方法
加括号法:当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。(即在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。)四年.级下数学简便运算: a+b+c=a+(b+c), a+b-c=a +(b-c), a-b+c=a-(b-c),a-b-C= a-( b +c);
当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要变为除;原来是除,现在就要变为乘。(即在乘除运算中添括号时,括号前是乘号,括号里不变
Ⅳ 小学六年级数学简便计算方法怎样计算
.;3+2/:这道题先去括号,再用等差数列方法计算;60+2/60)
=1/4+3/2+2+5/.;60+....59/2)×59×1/..;4)+;2+.;3)+(1/,接着归类;2+(1/.;2
=(1/2+59/解.+(1/..59/:原式=1/60+3/.;2
=30×59×1/..;2+1+3/4+2/2
=885
说明
Ⅵ 小学六年级数学用简便方法计算
1到6年级数学公式
【和差问题公式】
(和+差)÷2=较大数;
(和-差)÷2=较小数。
【和倍问题公式】
和÷(倍数+1)=一倍数;
一倍数×倍数=另一数,
或
和-一倍数=另一数。
【差倍问题公式】
差÷(倍数-1)=较小数;
较小数×倍数=较大数,
或
较小数+差=较大数。
【平均数问题公式】
总数量÷总份数=平均数。
【一般行程问题公式】
平均速度×时间=路程;
路程÷时间=平均速度;
路程÷平均速度=时间。
【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。这两种题,都可用下面的公式解答:
(速度和)×相遇(离)时间=相遇(离)路程;
相遇(离)路程÷(速度和)=相遇(离)时间;
相遇(离)路程÷相遇(离)时间=速度和。
【同向行程问题公式】
追及(拉开)路程÷(速度差)=追及(拉开)时间;
追及(拉开)路程÷追及(拉开)时间=速度差;
(速度差)×追及(拉开)时间=追及(拉开)路程。
【列车过桥问题公式】
(桥长+列车长)÷速度=过桥时间;
(桥长+列车长)÷过桥时间=速度;
速度×过桥时间=桥、车长度之和。
【行船问题公式】
(1)一般公式:
静水速度(船速)+水流速度(水速)=顺水速度;
船速-水速=逆水速度;
(顺水速度+逆水速度)÷2=船速;
(顺水速度-逆水速度)÷2=水速。
(2)两船相向航行的公式:
甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度
(3)两船同向航行的公式:
后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。
【工程问题公式】
(1)一般公式:
工效×工时=工作总量;
工作总量÷工时=工效;
工作总量÷工效=工时。
(2)用假设工作总量为“1”的方法解工程问题的公式:
1÷工作时间=单位时间内完成工作总量的几分之几;
1÷单位时间能完成的几分之几=工作时间。
1
.每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2.
1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3.
速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4.
单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5.
工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6
加数+加数=和
和-一个加数=另一个加数
7
被减数-减数=差
被减数-差=减数
差+减数=被减数
8
因数×因数=积
积÷一个因数=另一个因数
9
被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1.
正方形
C周长
S面积
a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2.
正方体
V:体积
a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3.
长方形
C周长
S面积
a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4
.长方体
V:体积
s:面积
a:长
b:
宽
h:高
(1)表面积=(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5
.三角形
s面积
a底
h高
面积=底×高÷2
s=ah÷2
三角形高=面积
×2÷底
三角形底=面积
×2÷高
6.
平行四边形
s面积
a底
h高
面积=底×高
s=ah
7.
梯形
s面积
a上底
b下底
h高
面积=(上底+下底)×高÷2
s=(a+b)×
h÷2
8
圆形
S面积
C周长
∏
d=直径
r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9.
圆柱体
v:体积
h:高
s;底面积
r:底面半径
c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10.
圆锥体
v:体积
h:高
s;底面积
r:底面半径
体积=底面积×高÷3
和差问题的公式;
总数÷总份数=平均数
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者
和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或
小数+差=大数)
植树问题
:
1.
非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2
封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
:
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
:
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
:
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
:
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
:
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题:
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
这些应该可以了吧?
Ⅶ 六年级上册数学简便计算有什么技巧
简便计算方法:
1、在同级运算中,可以任意交换数字的位置,但要连着前面的符号一起交换。(加法或乘法交换律)
2 、在同级运算中,加号或乘号后面可以直接添括号,去括号;减号、除号后面添括号,去括号,括号里面的要变号。(加法或乘法结合律)
3、凑一法,凑十法,凑百法,凑千法:“前面凑九,末尾凑十”。
必记:25找4凑100,125找8凑1000 (凑整思想)。
数学乘法运算定律
整数的乘法运算满足:交换律,结合律,分配律,消去律。
随着数学的发展, 运算的对象从整数发展为更一般群,群中的乘法运算不再要求满足交换律,最有名的非交换例子,就是哈密尔顿发现的四元数群,但是结合律仍然满足。
1、乘法交换律:ab=ba,注:字母与字母相乘,乘号不用写,或者可以写成“·”。
2、乘法结合律:(ab)c=a(bc)。
3、乘法分配律:(a+b)c=ac+bc。
Ⅷ 六年级数学公式大全及计算法
(1)一次有余(盈),一次不够(亏),可用公式: (盈+亏)÷(两次每人分配数的差)=人数。
例如,“小朋友分桃子,每人10个少9个,每人8个多7个。问:有多少个小朋友和多少个桃子?”
解(7+9)÷(10-8)=16÷2 =8(个)„„„„„„人数
10×8-9=80-9=71(个)„„„„„„„„„桃子 或8×8+7=64+7=71(个)(答略)
(2)两次都有余(盈),可用公式:
(大盈-小盈)÷(两次每人分配数的差)=人数。
例如,“士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。问:有士兵多少人?有子弹多少发?”
解(680-200)÷(50-45)=480÷5 =96(人)
45×96+680=5000(发)
或50×96+200=5000(发)(答略)
(3)两次都不够(亏),可用公式:
(大亏-小亏)÷(两次每人分配数的差)=人数。
例如,“将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。有多少学生和多少本本子?”
解(90-8)÷(10-8)=82÷2
=41(人)
10×41-90=320(本)(答略)
(4)一次不够(亏),另一次刚好分完,可用公式: 亏÷(两次每人分配数的差)=人数。 (例略)
(5)一次有余(盈),另一次刚好分完,可用公式: 盈÷(两次每人分配数的差)=人数。
=41(人)
10×41-90=320(本)(答略)
1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1
全长=株距×(株数+1) 株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数
全长=株距×(株数+1) 株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数
分数除法
分数除以整数(1)
分数除以整数,分母不变,如果分子是整数的倍数,则用分子除以整数,最后不是最简分数要化成最简分数。
例1:4/15÷2=4÷2/15=2/15 例2:42/30÷7=42÷7/30=6/30=1/5 分数除以整数(2)
分数除以整数,分母不变,如果分子不是整数的倍数,则用这个分数乘这个整数的倒数,最后不是最简分数要化成最简分数。
例1:3/8÷2=3/8×1/2=3×1/8×2=3/16 例2:4/5÷6=4/5×1/6=4×1/5×6=4/30=2/15 分数除以分数
分数除以分数,等于被除数乘除数的倒数,最后不是最简分数要化成最简分数。 例1:2/3÷3/4=2/3×4/3=2×4/3×3=8/9
例2:2/15÷1/3=2/15×3=2×3/15=6/15=2/5
和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题
和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数) 差倍问题
差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数) 平均数问题公式
总数量÷总份数=平均数。
浓度问题:
溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度
Ⅸ 小学六年级数学巧妙计算
1/15+2/17)*15*17 要记住用乘法分配律
=(1/15)*15*17+(2/17)*15*17
=17+15*2
=17+30
=47
1/1*2+1/2*3+……+1/99*100 思路要开阔
=(1/1-1/2)+(1/2-1/3)+……+(1/99-1/100)
=1/1-1/100
=99/100
Ⅹ 六年级上册数学简便计算方法有哪些
主要有六大方法:
1.“凑整巧算”——运用加法的交换律、结合律进行计算。
2.运用乘法的交换律、结合律进行简算。
3.运用减法的性质进行简算,同时注意逆进行。
4.运用除法的性质进行简算 (除以一个数,先化为乘以一个数的倒数,再分配)。
5.运用乘法分配律进行简算。
6.混合运算(根据混合运算的法则)。
乘法分配律
简便计算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意实数。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆运用(也叫提取公约数),尤其是a与b互为补数时,这种方法更有用。
也有时用到了加法结合律,比如a+b+c,b和c互为补数,就可以把b和c结合起来,再与a相乘。
乘法结合律
乘法结合律也是做简便运算的一种方法,用字母表示为(a×b)×c=a×(b×c),它的定义(方法)是:三个数相乘,先把前两个数相乘,再和第三个数相乘;或先把后两个数相乘,再和第一个数相乘,积不变。它可以改变乘法运算当中的运算顺序,在日常生活中乘法结合律运用的不是很多,主要是在一些较复杂的运算中起到简便的作用。