⑴ 【1/3】的负2次方=多少
1//3 就是3 的-1次方 (3的1-次方)的-2次方 次方的运算 就是相乘··也就是-1*-2 负负得正就是2~~也就是3的2次方 所以是9啦···············
⑵ 13的2次方 怎么计算
13的2次方=13X13=169
⑶ 三分之一的负二次方怎么算
1/3的-2次方,首先可以把1/3写成3的负一次方,-1次方和-2次方相乘等于2次方,即应该等于3的二次方,即9。
分数的负几次方的计算, 只需要将底数变为它的倒数指数变为它的相反数,就可以求出来。
比如下面的这道题1/3的倒数就是3,它的指数就变成了-2的相反数就是2。也就是可以直接得出3的平方等于9。
只要掌握了这一个计算方法,把这一个记住了,再做这样题就会简单很多。
⑷ 一个数的负数次方怎么计算
计算方法:一个数的负次方即为这个数的正次方的倒数。
a^-x=1/a^x
例如:
2的-1次方=1/2的一次方;
1/2的-1次方=2的一次方;
5的-2次方=1/5的二次方;
1/5的-2次方=5的二次方。
(4)13的负二次方的计算方法扩展阅读
正整数指数幂、负整数指数幂、零指数幂统称为整数指数幂。正整数指数幂的运算法则对整数指数幂仍然是成立的。学习了零指数幂和负整数指数幂后,正整数指数幂的运算性质可以推知广到整数指数幕的范围。
指数幂的运算法则:
1、同底数幂相乘,底数不变,指数相加。
2、幂的乘方,底数不变,指数相乘。
对于乘除和乘方的混合运算,应道先算乘方,后算乘除;如果遇到括号,就先进行括号里的运算。
⑸ 次方有关的所有公式,详解并举例!
幂通俗的说就是我们通常所说的多少次方,比如平方叫二次幂,立方叫三次幂,幂的大小是整数,不能是分数和小数。。。希望可以帮到你哦。。、、请输入你的答案...一元三次方程的求根公式称为“卡尔丹诺公式”
一元三次方程的一般形式是
x3+sx2+tx+u=0
如果作一个横坐标平移y=x+s/3,那么我们就可以把方程的二次项消
去。所以我们只要考虑形如
x3=px+q
的三次方程。
假设方程的解x可以写成x=a-b的形式,这里a和b是待定的参数。
代入方程,我们就有
a3-3a2b+3ab2-b3=p(a-b)+q
整理得到
a3-b3 =(a-b)(p+3ab)+q
由二次方程理论可知,一定可以适当选取a和b,使得在x=a-b的同时,
3ab+p=0。这样上式就成为
a3-b3=q
两边各乘以27a3,就得到
27a6-27a3b3=27qa3
由p=-3ab可知
27a6 + p = 27qa3
这是一个关于a3的二次方程,所以可以解得a。进而可解出b和根x.
除了求根公式和因式分解外还可以用图象法解,中值定理。很多高次方程是无法求得精确解的,对于这类方程,可以使用二分法,切线法,求得任意精度的近似解。参见同济四版的高等数学。
一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。
一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。我归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下:
(1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到
(2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3))
(3)由于x=A^(1/3)+B^(1/3),所以(2)可化为
x^3=(A+B)+3(AB)^(1/3)x,移项可得
(4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知
(5)-3(AB)^(1/3)=p,-(A+B)=q,化简得
(6)A+B=-q,AB=-(p/3)^3
(7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即
(8)y1+y2=-(b/a),y1*y2=c/a
(9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a
(10)由于型为ay^2+by+c=0的一元二次方程求根公式为
y1=-(b+(b^2-4ac)^(1/2))/(2a)
y2=-(b-(b^2-4ac)^(1/2))/(2a)
可化为
(11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2)
y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2)
将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得
(12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2)
B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2)
(13)将A,B代入x=A^(1/3)+B^(1/3)得
(14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3)
后记:
一、(14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了。由于计算太复杂及这个问题历史上已经解决,我不愿花过多的力气在上面,我做这项工作只是想考验自己的智力,所以只要关键的问题解决了另两个根我就没有花力气去求解。
二、我也曾用类似的方法去求解过一元四次方程的解,具体就是假设一元四次方程的根的形式为x=A^(1/4)+B^(1/4)+C^(1/4),有一次我好象解出过,不过后来多次求解好象说明这种方法求解一元四次方程解不出。不过我认为如果能进一步归纳出A、B、C的形式,应该能求出一元四次方程的求根公式的。由于计算实在太复杂及这个问题古人已经解决了,我后来一直没能完成这项工作。
三、通过求解一元三次方程的求根公式,我获得了一个经验,用演绎法(就是直接推理)求解不出来的问题,换一个思维,用归纳法(及通过对简单和特殊的同类问题的解法的归纳类比)常常能取得很好的效果。事实上人类常常是这样解决问题的,大科学家正是这样才成为大科学家的。 2次方的 公式ax^2+bx+c=0
x=[-b+根号(b^-4ac)]/2a
x=[-b-根号(b^2-4ac)]/2a
当b^2-4ac>0时
方程有两个不等的根
当b^2-4ac=0
方程有一个根
当b^2-4ac<0
方程在实数内无解 二元二次方程组没有公式可套,只能根据不同的题型采用不同的方法:
第一类型:由一个二元一次方程和一个二元二次方程所组成的方程组,
a1x+b1y+c1=0 (1)
a2x^2+b2xy+c2y^2+d2x+e2y+f2=0 (2)
可用代入消元的方法转化为一元二次方程来解,这种形式的方程组一般有两组解。
第二类型:由两个二元二次方程组成的方程组
a1x^2+b1xy+c1y^2+d1x+e1y+f1=0
a2x^2+b2xy+c2y^2+d2x+e2y+f2=0
(1)如果一个二元二次方程的左边可以因式分解,则将这个方程因式分解,变为两个二元一次方程,再和另一个方程组成两个第一类型的方程组,再用代入消元,这种形式的方程组一般有四组解。
(2)如果是由一个一元二次方程和一个二元二次方程所组成的方程组,则可先解一元二次方程,再代入到另一个方程求解,这种形式的方程组一般有四组解。
(3)如果 a1:a2=b1:b2=c1:c2 则可采用消去二次项,变为第一类型可求解。
(4)如果 a1:a2=b1:b2=d1:d2 或 b1:b2=c1:c2=e1:e2 则可采用消元的方法变为第(2)种形式求解 福次方65^2-16^2)^负1/2
解是
=√1/3969
=1/63
还是
1/√3969?
是不是开分母的方在分之分子?还是一起开?还是什么?880
⑹ 三分之一的负二次方怎么算,1/3的负二次方怎么算
1/3^-2,1/3可以看成3的-1次方,那么1/3的负二次方就相当于3的平方等于9.
⑺ 一个数的负二次方等于多少
一个数的负2次方等于这个数的正2次方的倒数,一个数的负n次方等于这个数的正n次方的倒数,比如3的负二次方等于3的二次方分之一,1/3的负二次方等于1/3的二次方分之一等于9,4的负三次方等于4的三次方分之一。
延伸阅读:平方运算
平方是一种运算,比如,a的平方表示a×a,简写成a2,也可写成a×a(a的一次方乘a的一次方等于a的2次方),例如4×4=16,8×8=64,平方符号为2。
1到20的平方:
1²=1,2²=4,3²=9,4²=16,5²=25,6²=36,7²=49,8²=64,9²=81,10²=100,11²=121,12²=144,13²=169,14²=196,15²=225,16²=256,17²=289,18²=324,19²=361,20²=400。
⑻ 十三分之十五的负的二次方算术平方根计算过程
(15/13)的-2次方
=1/(15/13)²
=(13/15)²
√(13/15)²=13/15
所以 13分之15的负二次方的算术平方根等于15分之13
⑼ 怎么计算负次方
一个数的负次方即为这个数的正次方的倒数。
根据公式:a^-x=1/a^x
例:2的-1次方=1/2的一次方。
1/2的-1次方=2的一次方。
5的-2次方=1/5的二次方,
1/5的-2次方=5的二次方。
(9)13的负二次方的计算方法扩展阅读
由5的0次方继续除以5就可以得出5的负数次方。
例如: 5的0次方是1 (任何非零数的0次方都等于1。)
5的-1次方是0.2 1÷ 5 =0.2
5的-2次方是0.04 0.2÷5 =0.04
0的负次方
由x^(-a)=1/(x^a)可得知
0^(-a)=1/(0^a)
例:0⁵=0×0×0×0×0=0
0的0次方无意义。
但有种种因素,如0的0次方之争议,所以该式子有争议,且不具有研究价值。