导航:首页 > 计算方法 > 小学47个计算方法

小学47个计算方法

发布时间:2022-08-09 17:27:13

Ⅰ 小学生数学快速计算的几个方法

1、十几乘十几
口诀:十几+另一数的个位,尾X尾,相加的和加上相乘的积,个位与十位对齐,注意要进位
如:15X16=240
用口诀计算:15+6=21,5X6=30,210+30=240
13X14=182用口诀计算:13+4=17,3X4=12,170+12=182
大家可以试着计算
11X13,12X16,16X17
2、个位与十位互换的两位数相加
口诀:(个位+十位)X11
如:67+76=143用口诀计算:(6+7)X11=143
93+39=132用口诀计算:(9+3)X11=132
大家可以试着计算
34+43,56+65,78+87
3、个位与十位的两位数相减
口诀:(被减数十位-被减数个位)X9
如:43-34=9用口诀计算:(4-3)X9=9
95-59=36用口诀计算:(9-5)X9=36
大家可以试着计算76-67,53-35,42-24

Ⅱ 加减乘除的计算方法 小学数学的加减乘除计算方法

先乘除,后加减,有括号的先算括号里的.整数加、减计算法则:1)要把相同数位对齐,再把相同计数单位上的数相加或相减; 2)哪一位满十就向前一位进.2、小数加、减法的计算法则:1)计算小数加、减法,先把各数的小数点对齐(也就是把相同数位上的数对齐),2)再按照整数加、减法的法则进行计算,最后在得数里对齐横线上的小数点点上小数点.(得数的小数部分末尾有0,一般要把0去掉.) 3、分数加、减计算法则:1)分母相同时,只把分子相加、减,分母不变; 2)分母不相同时,要先通分成同分母分数再相加、减.4、整数乘法法则:1)从右起,依次用第二个因数每位上的数去乘第一个因数,乘到哪一位,得数的末尾就和第二个因数的哪一位对个因数的哪一位对齐; 2)然后把几次乘得的数加起来.(整数末尾有0的乘法:可以先把0前面的数相乘,然后看各因数的末尾一共有几个0,就在乘得的数的末尾添写几个0.) 5、小数乘法法则:1)按整数乘法的法则算出积; 2)再看因数中一共有几位小数,就从得数的右边起数出几位,点上小数点.3)得数的小数部分末尾有0,一般要把0去掉.6、分数乘法法则:把各个分数的分子乘起来作为分子,各个分数的分母相乘起来作为分母,(即乘上这个分数的倒数),然后再约分.7、整数的除法法则 1)从被除数的商位起,先看除数有几位,再用除数试除被除数的前几位,如果它比除数小,再试除多一位数; 2)除到被除数的哪一位,就在那一位上面写上商; 3)每次除后余下的数必须比除数小.8、除数是整数的小数除法法则:1)按照整数除法的法则去除,商的小数点要和被除数的小数点对齐; 2)如果除到被除数的末尾仍有余数,就在余数后面补零,再继续除.9、除数是小数的小数除法法则:1)先看除数中有几位小数,就把被除数的小数点向右移动几位,数位不够的用零补足; 2)然后按照除数是整数的小数除法来除 10、分数的除法法则:1)用被除数的分子与除数的分母相乘作为分子; 2)用被除数的分母与除数的分子相乘作为分母

Ⅲ 小学数学等式的计算有几种方法

一、细算、巧算,一分不错过。(12分)5×24+76=25+75÷3=5×8+2÷2=(16+4÷2)×10=47-(21-15)×5=5×9-24÷8=1000÷125+560÷56=150-(25×4+5)=二、运算规则要遵守,谁先谁后我来辨。(9分)1、(148-111÷37)×5,先算()法,再算()法,最后算()法。2、200×5-(147+465),可以先同时算()法和()法,再算()。3、(39+105)÷(35-27),去掉两个小括号后,应先算()法,再算()法,最后算()法。三、用递等式计算下面各题。(18分)(125+13×24)×5(98-121÷11)÷2921×(230-192÷4)(470+35×3)÷232600÷(1280-15×72)3774÷37×(65+35)

Ⅳ 小学四年级数学简便计算方法技巧

小学四年级数学简便计算例子演示19×24+19×46
解题思路:四则运算规则(按顺序计算,先算乘除后算加减,有括号先算括号,有乘方先算乘方)即脱式运算(递等式计算)需在该原则前提下进行

解题过程:
19×24+19×46

=19×(24+46)

=19×70

=1330

(4)小学47个计算方法扩展阅读→竖式计算-计算结果:先将两乘数末位对齐,然后分别使用第二个乘数,由末位起对每一位数依次乘上一个乘数,最后将所计算结果累加即为乘积,如果乘数为小数可先将其扩大相应的倍数,最后乘积在缩小相应的倍数;

解题过程:
步骤一:9×70=630

步骤二:1×70=700

根据以上计算结果相加为1330

存疑请追问,满意请采纳

Ⅳ 小学数学简便计算公式

总结了小学数学的计算公式,及其灵活运用,简便计算技巧。

①加法

加法交换律:a+b=b+a;

加法结合律:a+b+c=a+(b+c)=(a+b)+c;

②减法

a-b=-(b-a)

a-b-c=a-(b+c)

减法有一个口诀:加括号,变符号。

③乘法

乘法交换律:a x b=b x a;

乘法结合律:a x b x c=a x (b x c);

乘法分配律:a x (b±c)=a x b±a x c;

小学数学试题中常考的一种题型-计算复杂数式。

经常就会用到乘法分配律,来提取公因数,简化计算。

【例1】计算:7.19x1.36+3.13x2.81+1.77x7.19

分析:这道题就是加法结合律,乘法交换律,乘法分配律的综合运用。

7.19x1.36+3.13x2.81+1.77x7.19

=7.19x(1.36+1.77)+3.13x2.81

=7.19x3.13+3.13x2.81

=(7.19+2.81)x3.13

=10x3.13

=31.3

④除法

a÷b÷c=a÷(b x c)(b,c不等于0);

a x b÷c=a÷cxb(c不等于0);

以上公式是解四则运算题目的基本关系式。

灵活学习,灵活运用。

它们除了正着用,有时候还得会倒着用。

【例2】计算:47.9x6.6+529x0.34;

分析:6.6+3.4=10,能不能想办法把凑出一个3.4,然后让3.4和6.6相加?

47.9x6.6+529x0.34

=47.9x6.6+529÷10x10x0.34

=47.9x6.6+52.9x3.4(3.4已经凑出来了)

=47.9x6.6+(47.9+5)x3.4

=47.9x6.6+47.9x3.4+5x3.4(6.6+3.4也凑出来了)

=47.9x(6.6+3.4)+17

=496

注意:例2题目中我们将乘法分配律倒着使用。

52.9x3.4=(47.9+5)x3.4=47.9x3.4+5x3.4

除此之外还用到了一个特别的公式。

529x0.34=529÷10x10x0.34

这个公式总结出来,即:

a x b=a÷c x c x b(c不等于0)

Ⅵ 小学数学计算方法有哪些

小学学的计算方法不外乎加减乘除
还有分数的运算,小数的运算和单位之间的互相运算等等

Ⅶ 请归纳小学数学简便计算的几种方法

对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?

由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.

Ⅷ 小学数学加减法速算方法与技巧

小学学生的加减法运算能力是非常重要的数学能力,运算能力不仅包括理解运算算理,掌握运算方法,还包括在遇到问题时能够找到合理简便的运算途径。
速算不仅能简化计算过程,化繁为简,化难为易,同时又会提高计算效率。
因此在学习过程中,不仅需要掌握计算法则,还需要学会一些运算技巧。

凑整"先计算
在进行加法运算时,若能对算式的各项恰当地分组,会使计算过程大大简化。两个数相加,若能恰好凑成整十、整百、整千、整万…则先计算。
如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
又如:12+88=100,35+65=100,21+79=100,44+56=100,55+45=100。
在上面算式中,1叫9的"补数";79叫21的"补数",44也叫56的"补数",也就是说两个数互为"补数"。
例题1.计算53+55+47
解:原式=(53+47)+55
=155
计算23+39+61
解:原式=23+(39+61)
=23+100
=123
对于不能直接凑整的,可以把其中一个数进行拆分,再凑整。
例题2.计算87+15
解:原式=87+13+2
=(87+13)+2
=100+2
=102
计算54+79
解:原式=33+21+79
=33+(21+79)
=33+100
=133
计算65+18+27
解:原式=60+2+3+18+27
=60+(2+18)+(3+27)
=60+20+30
=110
对于没有直接凑整的数的,可以先凑整,最后再减去凑整的数。
例题3.计算:38+29+19
解:原式=(38+2)+(29+1)+(19+1)-4
=40+30+20-4
=90-4
=86
等差数列
计算等差连续数(等差数列)的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:
1,2,3,4,5,6,7,8,9
1,3,5,7,9
2,4,6,8,10
3,6,9,12,15
4,8,12,16,20等都是等差连续数
1、等差连续数的个数是奇数时,它们的和等于中间数乘以个数。
例题4.计算1+2+3+4+5+6+7+8+9
解:原式=5×9(中间数是5,共9个数)
=45
计算1+3+5+7+9+11+13
解:原式=7×7(中间数是7,共7个数)
=49
计算2+4+6+8+10
解:原式=6×5(中间数是6,共5个数)
=30
2、等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半。
例题5.计算1+2+3+4+5+6+7+8+9+10
共10个数,个数的一半是5,首数是1,末数是10。
解:原式=(1+10)×5
=11×5
=55
计算1+3+5+7+9+11+13+15
共8个数,个数的一半是4,首数是1,末数是15。
解:原式=(1+15)×4
=16×4
=64
计算2+4+6+8+10+12
共6个数,个数的一半是3,首数是2,末数是12。
解:原式=(2+12)×3
=14×3
=42
基准数法
先观察各个加数的大小接近什么数字,再把每个加数先按接近的数字相加,然后再把少算的加上,把多算的减去。
例题6.计算23+22+24+18+19+17
通过观察发现所有的加项比较接近20
解:原式=20×6+3+2+4-2-1-3
=120+9-6
=123
计算103+102+101+99+98
所有加项比较接近100
解:原式=100×5+3+2+1-1-2
=500+3
=503
减法中的巧算
1、把几个互为"补数"的减数先加起来,再从被减数中减去。
例题7.计算 400-63-37
解:原式= 400-(63+37)
=400-100
=300
计算1000-90-80-10-20
解:原式=1000-(90+80+10+20)
=1000-200
=800
2、先减去那些与被减数有相同尾数的减数。
例题8.计算4622-(622+149)
解:原式=4000-149
=3851
3、利用"补数"先凑整,再运算(注意把多加的数再减去,把多减的数再加上)。
例题9.计算505-397
解:原式=500+5-400+3(把多减的 3再加上)
=108
计算523-289
解:原式=523-300+11(把多减的11再加上)
=223+11
=234
计算358+997
解:原式=358+1000-3(把多加的3再减去)
=1355
加减混合式的运算
1、去括号和添括号的法则
在只有加减运算的算式里,如果括号前面是"+"号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是"-"号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,"+"变"-","-"变"+"。
例题10.计算200-20-10-30
解:原式=200-(10+20+30)
=200-60
=140
计算100-40+30
解:原式=100-(40-30)
=100-10
=90
2、带符号"搬家"
例题11.计算 545+47-145+53
解:原式=545-145+47+53
=(545-145)+(47+53)
=400+100
=500
注意:每个数前面的运算符号是这个数的符号,如+47,-145,+53。而545前面虽然没有符号,应看作是+545。
3、两个数相同而符号相反的数可以直接"抵消"掉
例题12.计算18+2-18+4
解:原式=18-18+2+4
=6

Ⅸ 数学简便计算,有哪几种方法

数学简便计算方法:

一、运用乘法分配律简便计算

简便计算中最常用的方法是乘法分配律。乘法分配律指的是:

ax(b+c)=axb+axc

cx(a-b)=axc-bxc

例1:38X101,我们要怎么拆呢?看谁更加的靠近整百或者整十,当然是101更好些,那我们就把101拆成100+1即可。

38X101

=38X(100+1)

=38X100+38X1

=3800+38

=3838

例2:47X98,这样该怎么拆呢?要拆98,使它更接近100。

47X98

=47X(100-2)

=47X100-47X2

=4700-94

=4606

二、基准数法

在一系列数中找出一个比较折中的数来代表全部的数,要记得这个数的选取不能偏离这一系列数。

例:

2072+2052+2062+2042+2083

=(2062x5)+10-10-20+21

=10310+1

=10311

三、加法结合律法

对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。

例:

5.76+13.67+4.24+6.33

=(5.76+4.24)+(13.67+6.33)

=30

四、拆分法

顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改变数的大小哦!

例:

3.2×12.5×25

=8×0.4×12.5×25

=8×12.5×0.4×25

=1000

五、提取公因式法

这个方法实际上是运用了乘法分配律,将相同因数提取出来。

例:

0.92×1.41+0.92×8.59

=0.92×(1.41+8.59)

=9.2

Ⅹ 小学1-6年级所有数学计算公式

体积和表面积
三角形的面积=底×高÷2。 公式 S= a×h÷2
正方形的面积=边长×边长 公式 S= a2
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的表面积=(长×宽+长×高+宽×高 ) ×2 公式:S=(a×b+a×c+b×c)×2
正方体的表面积=棱长×棱长×6 公式: S=6a2
长方体的体积=长×宽×高 公式:V = abh
长方体(或正方体)的体积=底面积×高 公式:V = abh
正方体的体积=棱长×棱长×棱长 公式:V = a3
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh

算术
1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:a + b = b + a
3、乘法交换律:a × b = b × a
4、乘法结合律:a × b × c = a ×(b × c)
5、乘法分配律:a × b + a × c = a × b + c
6、除法的性质:a ÷ b ÷ c = a ÷(b × c)
7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。 简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
8、有余数的除法: 被除数=商×除数+余数
方程、代数与等式
等式:等号左边的数值与等号右边的数值相等的式子叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
方程式:含有未知数的等式叫方程式。
一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
代数: 代数就是用字母代替数。
代数式:用字母表示的式子叫做代数式。如:3x =ab+c

分数
分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
倒数的概念:1.如果两个数乘积是1,我们称一个是另一个的倒数。这两个数互为倒数。1的倒数是1,0没有倒数。
分数除以整数(0除外),等于分数乘以这个整数的倒数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小
分数的除法则:除以一个数(0除外),等于乘这个数的倒数。
真分数:分子比分母小的分数叫做真分数。
假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
带分数:把假分数写成整数和真分数的形式,叫做带分数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
数量关系计算公式
单价×数量=总价 2、单产量×数量=总产量
速度×时间=路程 4、工效×时间=工作总量
加数+加数=和 一个加数=和+另一个加数
被减数-减数=差 减数=被减数-差 被减数=减数+差
因数×因数=积 一个因数=积÷另一个因数
被除数÷除数=商 除数=被除数÷商 被除数=商×除数

长度单位:
1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
面积单位:
1平方千米=100公顷 1公顷=10000平方米
1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
1亩=666.666平方米。
体积单位
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1升=1立方分米=1000毫升 1毫升=1立方厘米
重量单位
1吨=1000千克 1千克= 1000克= 1公斤= 1市斤


什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
比例的基本性质:在比例里,两外项之积等于两内项之积。
解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:x×y = k( k一定)或k / x = y

百分数
百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
要学会把小数化成分数和把分数化成小数的化发。

倍数与约数
最大公约数:几个数公有的约数,叫做这几个数的公约数。公因数有有限个。其中最大的一个叫做这几个数的最大公约数。
最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。公倍数有无限个。其中最小的一个叫做这几个数的最小公倍数。
互质数: 公约数只有1的两个数,叫做互质数。相临的两个数一定互质。两个连续奇数一定互质。1和任何数互质。
通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
约分:把一个分数的分子、分母同时除以公约数,分数值不变,这个过程叫约分。
最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。
质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。
分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。
倍数特征:
2的倍数的特征:各位是0,2,4,6,8。
3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数。
5的倍数的特征:各位是0,5。
4(或25)的倍数的特征:末2位是4(或25)的倍数。
8(或125)的倍数的特征:末3位是8(或125)的倍数。
7(11或13)的倍数的特征:末3位与其余各位之差(大-小)是7(11或13)的倍数。
17(或59)的倍数的特征:末3位与其余各位3倍之差(大-小)是17(或59)的倍数。
19(或53)的倍数的特征:末3位与其余各位7倍之差(大-小)是19(或53)的倍数。
23(或29)的倍数的特征:末4位与其余各位5倍之差(大-小)是23(或29)的倍数。
倍数关系的两个数,最大公约数为较小数,最小公倍数为较大数。
互质关系的两个数,最大公约数为1,最小公倍数为乘积。
两个数分别除以他们的最大公约数,所得商互质。
两个数的与最小公倍数的乘积等于这两个数的乘积。
两个数的公约数一定是这两个数最大公约数的约数。
1既不是质数也不是合数。
用6去除大于3的质数,结果一定是1或5。
奇数与偶数
偶数:个位是0,2,4,6,8的数。
奇数:个位不是0,2,4,6,8的数。
偶数±偶数=偶数 奇数±奇数=奇数 奇数±偶数=奇数
偶数个偶数相加是偶数,奇数个奇数相加是奇数。
偶数×偶数=偶数 奇数×奇数=奇数 奇数×偶数=偶数
相临两个自然数之和为奇数,相临自然数之积为偶数。
如果乘式中有一个数为偶数,那么乘积一定是偶数。
奇数≠偶数

整除
如果c|a, c|b,那么c|(a±b)
如果,那么b|a, c|a
如果b|a, c|a,且(b,c)=1, 那么bc|a
如果c|b, b|a, 那么c|a

小数
自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
纯小数:个位是0的小数。
带小数:各位大于0的小数。
循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414
不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如3. 141592654
无限循环小数:一个小数,从小数部分到无限位数,一个数字或几个数字依次不断的重复出现,这样的小数叫做无限循环小数。如3. 141414……

无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……

利润
利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率

阅读全文

与小学47个计算方法相关的资料

热点内容
红米2指纹在哪里设置方法 浏览:120
戴胸罩的正确方法视频 浏览:469
尾气不达标检测方法 浏览:149
带读属于什么方法 浏览:427
早产儿体重快速增长的方法 浏览:308
最佳怀孕姿势和方法 浏览:281
清明叠金元宝的简单方法 浏览:372
四胞胎记忆方法视频 浏览:463
煤气口漏气怎么处理方法 浏览:998
数字万用表交流电压测量方法步骤 浏览:657
后脸部按摩仪使用方法 浏览:452
决策分析方法练习题 浏览:258
简单擦眼霜的正确使用方法图 浏览:28
昂科威烧机油最简单的修复方法 浏览:161
简单小白菜种植方法 浏览:820
让安卓手机出故障的方法 浏览:405
铜的显微结构分析方法 浏览:764
绕组电阻档的测量方法 浏览:72
devondale奶粉使用方法 浏览:249
黑枸杞剪枝方法图片 浏览:555