Ⅰ 正态分布的标准差如何计算
正态分布的标准差正态分布N~(μ,δ^2),方差D(x)=δ^2,E(x)=μ。
服从标准正态分布,通过查标准正态分布表就可以直接计算出原正态分布的概率值。μ维随机向量具有类似的概率规律时,随机向量遵从多维正态分布。
多元正态分布有很好的性质,例如,多元正态分布的边缘分布仍为正态分布,它经任何线性变换得到的随机向量仍为多维正态分布,特别它的线性组合为一元正态分布。
(1)标准正态偏差计算方法扩展阅读:
从概率统计规律看,“正常的考试成绩分布应基本服从正态分布”是正确的。但是必须考虑人与物的本质不同,以及教育的有所作为可以使“随机”受到干预,用曲线或直方图的形状来评价考试成绩就有失偏颇。许多教育专家(如上海顾泠沅、美国布鲁姆等)已经通过实践论证,教育是可以大有作为的,可以做到大多数学生及格,而且多数学生可以得高分,考试成绩曲线是偏正态分布的。但是长期受到“中间高、两头低”标准的影响。
限制了教师的作为,抑制了多数学生能够学好的信心。这是很大的误会。通常正态曲线有一条对称轴。当某个分数(或分数段)的考生人数最多时,对应曲线的最高点,是曲线的顶点。该分数值在横轴上的对应点与顶点连接的线段就是该正态曲线的对称轴。考生人数最多的值是峰值。我们注意到,成绩曲线或直方图实际上很少对称的,称之为峰线更合适。
Ⅱ 正态分布标准差σ计算公式
正态分布标准差σ计算公式σ=√{Σ(i:1→n)(xi-E)²/n}。正态分布也称“常态分布”,又名高斯分布。最早由棣莫弗在求二项分布的渐近公式中得到。
正态分布是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。
Ⅲ 正态分布的标准差如何计算 它和方差如何换算
正态分布的标准差正态分布N~(μ,δ^2),方差D(x)=δ^2,E(x)=μ。
服从标准正态分布,通过查标准正态分布表就可以直接计算出原正态分布的概率值。μ维随机向量具有类似的概率规律时,随机向量遵从多维正态分布。
多元正态分布有很好的性质,例如,多元正态分布的边缘分布仍为正态分布,它经任何线性变换得到的随机向量仍为多维正态分布,特别它的线性组合为一元正态分布。
(3)标准正态偏差计算方法扩展阅读:
正态曲线呈钟形,两头低,中间高,左右对称因其曲线呈钟形,若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布。
其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布成为标准正态分布。
Ⅳ 标准偏差的计算公式
标准偏差的计算公式是s=sqrt(((x1-x)^2+(x2-x)^2+......(xn-x)^2)/(n-1)),标准偏差是一种度量数据分布的分散程度之标准,用以衡量数据值偏离算术平均值的程度。标准偏差越小,这些值偏离平均值就越少,反之亦然。标准偏差的大小可通过标准偏差与平均值的倍率关系来衡量。
标准差也被称为标准偏差,标准差描述各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度,标准偏差越小,这些值偏离平均值就越少,反之亦然。标准偏差的大小可通过标准偏差与平均值的倍率关系来衡量。平均数相同的两个数据集,标准差未必相同。
Ⅳ 标准正态偏差如何计算
规律:图形越矮胖,标准差越大;图形越高瘦,标准差越小
正态分布图是反映数据的集中情况的,
越矮胖,就是数据越不集中,标准差就越大
越高瘦,就说明数据集中在某些数据周围,标准差固然就小
Ⅵ 数据的正误差和负误差及标准偏差怎么算
数据中的误差=测量值-真值
如果:测量值>真值,那么就是正误差;
如果:测量值<真值,那么就是负误差
标准偏差则是指:各数据偏离平均数距离的平均数方根。
x代表单次测定值。由于测定次数往往不止一次,因此通常用数次平行测定结果的算术平均值来表示分析结果。此时:
Ea=x平均值-T
相对误差是绝对误差和真值的百分比率:
Er=Ea/TX100%
当测定值大于真值是时,误差为正,表明测定结果偏高;反之,误差为负,表明测定值偏低。在测定的绝对误差相同的条件下,待测组分含量越高,相对误差越小;反之,相对误差越大。因此,在实际工作中,常用相对误差表示测定结果的准确度。
有时也采用中位数来表示分析结果。中位数即一组测定数据从小至大进行排列时,处于中间的那个数据或中间相邻两个数据的平均值。用中位数表示分析结果比较简单,但存在不能充分利用数据的缺点。
Ⅶ 正态分布的标准差如何计算(越清楚越好)谢谢。。
用平均数作为样本的代表,其代表性的强弱受样本资料中各观测值变异程度的影响。如果各观测值变异小,则平均数对样本的代表性强;如果各观测值变异大,则平均数代表性弱。因而仅用平均数对一个资料的特征作统计描述是不全面的,还需引入一个表示资料中观测值变异程度大小的统计量。
全距(极差)是表示资料中各观测值变异程度大小最简便的统计量。全距大,则资料中各观测值变异程度大,全距小,则资料中各观测值变异程度小。但是全距只利用了资料中的最大值和最小值,并不能准确表达资料中各观测值的变异程度,比较粗略。当资料很多而又要迅速对资料的变异程度作出判断时,可以利用全距这个统计量。
为了准确地表示样本内各个观测值的变异程度,人们首先会考虑到以平均数为标准,求出各个观测值与平均数的离差,即(),称为离均差。虽然离均差能表达一个观测值偏离平均数的性质和程度,但因为离均差有正、有负,离均差之和为零,即Σ()=0,因而不能用离均差之和Σ()来表示资料中所有观测值的总偏离程度。为了解决离均差有正、有负,离均差之和为零的问题,可先求离均差的绝对值并将各离均差绝对值之和除以观测值n求得平均绝对离差,即Σ||/n。虽然平均绝对离差可以表示资料中各观测值的变异程度,但由于平均绝对离差包含绝对值符号,使用很不方便,在统计学中未被采用。我们还可以采用将离均差平方的办法来解决离均差有正、有负,离均差之和为零的问题。先将各个离均差平方,即 ()2,再求离均差平方和,即Σ,简称平方和,记为SS;由于离差平方和常随样本大小而改变,为了消除样本大小的影响,用平方和除以样本大小,即Σ,求出离均差平方和的平均数;为了使所得的统计量是相应总体参数的无偏估计量,统计学证明,在求离均差平方和的平均数时,分母不用样本含量n,而用自由度n-1,于是,我们采用统计量Σ表示资料的变异程度。统计量Σ称为均方(mean square缩写为MS),又称样本方差,记为S2,即
S2= (3—9)
相应的总体参数叫总体方差,记为σ2。对于有限总体而言,σ2的计算公式为:
σ2μ)2/N (3—10)
由于样本方差带有原观测单位的平方单位,在仅表示一个资料中各观测值的变异程度而不作其它分析时,常需要与平均数配合使用,这时应将平方单位还原,即应求出样本方差的平方根。统计学上把样本方差S2的平方根叫做样本标准差,记为S,即:
(3-11)
由于
所以(3-11)式可改写为:
(3-12)
相应的总体参数叫总体标准差,记为σ。对于有限总体而言,σ的计算公式为:
σ= (3-13)
在统计学中,常用样本标准差S估计总体标准差σ。
二、标准差的计算方法
(一)直接法 对于未分组或小样本资料,可直接利用(3—11)或(3-12)式来计算标准差。
【例3.9】 计算10只辽宁绒山羊产绒量:450,450,500,500,500,550,550,550,600,600,650(g)的标准差。
此例n=10,经计算得:Σx=5400,Σx2=2955000,代入(3—12)式得:
(g)
即10只辽宁绒山羊产绒量的标准差为65.828g。
(二)加权法 对于已制成次数分布表的大样本资料,可利用次数分布表,采用加权法计算标准差。计算公式为:
(3—14)
式中,f为各组次数;x为各组的组中值;Σf = n为总次数。
【例3.10】 利用某纯系蛋鸡200枚蛋重资料的次数分布表(见表3-4)计算标准差。
将表3-4中的Σf、Σfx、Σfx2代入(3—14)式得:
(g)
即某纯系蛋鸡200枚蛋重的标准差为3.5524g。
表3—4 某纯系蛋鸡200枚蛋重资料次数分布及标准差计算表
组别
组中值(x)
次数(f)
fx
fx2
44.15—
45.0
3
135.0
6075.0
45.85—
46.7
6
280.2
13085.34
47.55—
48.4
16
774.4
37480.96
49.25—
50.1
22
1102.2
55220.22
50.95—
51.8
30
1554.0
80497.20
52.65—
53.5
44
2354.0
125939.00
54.35—
55.2
28
1545.0
85317.12
56.05—
56.9
30
1707.0
97128.30
57.75—
58.6
12
703.2
41207.52
59.45—
60.3
5
301.5
18180.45
61.15—
62.0
4
248.0
15376.00
合计
Σf=200 Σfx=10705.1 Σfx2=575507.11
三、标准差的特性
(一)标准差的大小,受资料中每个观测值的影响,如观测值间变异大,求得的标准差也大,反之则小。
(二)在计算标准差时,在各观测值加上或减去一个常数,其数值不变。
(三)当每个观测值乘以或除以一个常数a,则所得的标准差是原来标准差的a倍或1/a倍。
(四)在资料服从正态分布的条件下,资料中约有68.26%的观测值在平均数左右一倍标准差(±S)范围内;约有95.43%的观测值在平均数左右两倍标准差(±2S)范围内;约有99.73%的观测值在平均数左右三倍标准差(±3S)范围内。也就是说全距近似地等于6倍标准差,可用()来粗略估计标准差。
第三节 变异系数
变异系数是衡量资料中各观测值变异程度的另一个统计量。当进行两个或多个资料变异程度的比较时,如果度量单位与平均数相同,可以直接利用标准差来比较。如果单位和(或)平均数不同时,比较其变异程度就不能采用标准差,而需采用标准差与平均数的比值(相对值)来比较。标准差与平均数的比值称为变异系数,记为C·V。变异系数可以消除单位和(或)平均数不同对两个或多个资料变异程度比较的影响。
变异系数的计算公式为:
(3—15)
【例3.11】 已知某良种猪场长白成年母猪平均体重为190kg,标准差为10.5kg,而大约克成年母猪平均体重为196kg,标准差为8.5kg,试问两个品种的成年母猪,那一个体重变异程度大。
此例观测值虽然都是体重,单位相同,但它们的平均数不相同,只能用变异系数来比较其变异程度的大小。
由于,长白成年母猪体重的变异系数:
大约克成年母猪体重的变异系数:
所以,长白成年母猪体重的变异程度大于大约克成年母猪。
注意,变异系数的大小,同时受平均数和标准差两个统计量的影响,因而在利用变异系数表示资料的变异程度时,最好将平均数和标准差也列出。
Ⅷ 标准偏差怎么算
样本标准偏差
(8)标准正态偏差计算方法扩展阅读:
标准差也被称为标准偏差,标准差(Standard Deviation)描述各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根,用σ表示。
标准差是方差的算术平方根。标准差能反映一个数据集的离散程度,标准偏差越小,这些值偏离平均值就越少,反之亦然。
标准偏差的大小可通过标准偏差与平均值的倍率关系来衡量。平均数相同的两个数据集,标准差未必相同。
例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。
这两组的平均数都是70,但A组的标准差应该是18.708分,B组的标准差应该是2.366分,说明A组学生之间的差距要比B组学生之间的差距大得多。
Ⅸ 标准正态分布的标准偏差
正态分布的标准差正态分布N~(μ,δ^2),方差D(x)=δ^2,E(x)=μ。
服从标准正态分布,通过查标准正态分布表就可以直接计算出原正态分布的概率值。μ维随机向量具有类似的概率规律时,随机向量遵从多维正态分布。
多元正态分布有很好的性质,例如,多元正态分布的边缘分布仍为正态分布,它经任何线性变换得到的随机向量仍为多维正态分布,特别它的线性组合为一元正态分布。
正态分布的特点:呈钟型,两头低,中间高,左右对称因其曲线呈钟形。
呈钟型,两头低,中间高,左右对称因其曲线呈钟形。
正态分布最早由A.棣莫弗在求二项分布的渐近公式中得到。C.F.高斯在研究测量误差时从另一个角度导出了它。P.S.拉普拉斯和高斯研究了它的性质。
是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。
Ⅹ 标准偏差公式的具体计算步骤
标准偏差的计算步骤是:
步骤一、(每个样本数据
减去
样本全部数据的平均值)。
步骤二、把步骤一所得的各个数值的平方相加。
步骤三、把步骤二的结果除以
(n
-
1)(“n”指样本数目)。
步骤四、从步骤三所得的数值之平方根就是抽样的标准偏差
有一组数字分别是200、50、100、200,求它们的标准偏差。
X平均
=
(200+50+100+200)/4
=
550/4
=
137.5
S^2
=
[(200-137.5)^2+(50-137.5)^2+(100-137.5)^2+(200-137.5)^2]/3
标准偏差
S
=√
(S^2)
开根号,求结果