‘壹’ 求数值计算方法答案(韩旭里)复旦大学出版社,谢谢。在这两天给出最好,急急急急急!
《数值分析 中南大学韩旭里 126讲》网络网盘资源免费下载
链接: https://pan..com/s/1ath5aUEumr5ueV5d_GRa5Q
数值分析 中南大学 韩旭里 126讲|线性方程组的迭代解法(一).mp4|线性方程组的迭代解法(五).mp4|线性方程组的迭代解法(四).mp4|线性方程组的迭代解法(三).mp4|线性方程组的迭代解法(七).mp4|线性方程组的迭代解法(六).mp4|线性方程组的迭代解法(二).mp4|数值积分与数值微分(一).mp4|数值积分与数值微分(五).mp4|数值积分与数值微分(四).mp4|数值积分与数值微分(十一).mp4|数值积分与数值微分(十五).mp4|数值积分与数值微分(十四).mp4|数值积分与数值微分(十三).mp4
‘贰’ 求一个数值计算方法的下载地址清华大学出版社的,吕同富 康兆姚等编着
http://www.tup.tsinghua.e.cn/Resource/tsyz/026932-01.pdf
这个只有前20页……
如果不是非要这个版本的,爱问上倒是有整本的下载
http://ishare.iask.sina.com.cn/f/5584955.html
‘叁’ 吕同富编写的《数值计算方法》PDF有吗
数值计算方法 冯康.pdf_免费高速下载|网络云 网盘-分享无限制
http://pan..com/wap/shareview?&shareid=129634403&uk=4197717621&dir=%2FMatlab%E7%94%B5%E5%AD%90%E4%B9%A6%2FTechnical%20Computing&page=1&num=20&fsid=2924483084&third=0&adapt=pc&fr=ftw
‘肆’ 大学数值计算方法课后习题四的第八题,怎么证明,求大神详解
作为大学生,这个要靠自己独立思考,自己独立完成。
根据一些同学的提问,我归纳了一下。新生入学报到时主要要准备如下东西、要注意如下事项:
1.相关证件。包括:身份证、录取通知书(入学通知书)、户口迁移证、党团组织关系证明(介绍信)、一寸登记照若干张(可以多带几张,以备它用),等等。这些很重要,一定不要忘记。另外,把父母、爷爷奶奶即各个近亲的姓名、出生年月、工作单位、职业和职务搞清楚,填下来,到学校要填各种表格,有的表格需要这些信息。
2.钱和卡。上学要交学费和住宿费(分别为每年4500-500元与1000元左右),合计要6000左右(个别专业可能要高些,如艺术类专业)。因为新生出门较少,没有什么旅途安全经验,建议少带现金(但千把块钱还是要带的,以备一些不时之需)。可以在家中先办一张信用卡或储值卡用于交学杂费等。有的学校会给你寄一张卡,让学生把钱存在其中,你可以用这张卡,也可以不用。如果家庭条件还可以,办一张信用卡,把它关联到父母亲的储值卡(如工资卡),每月刷卡后直接从父母亲的卡中扣款,这样的好处是方便、安全。但如果你不想让父母亲知道你的消费情况,可以自己在老家办一张储值卡(让父母亲往里冲钱),然后办一张信用卡与之关联。也可以到学校再办储值卡与信用卡,但这样你父母亲异地往你的储值卡打钱时要付手续费。
3.一般情况下,各个学校都要配发一些学习和日常生活用品,这些东西不是无偿给你的,都要你花钱购买。学校发的物品质量都很次而且贵,建议学校发的东西如果可以不要就尽量不要,能自己买的就别买学校发的,有些生活必需品则可以在离开家时先配好,免得到学校后由于人生地不熟不好买。
4.衣服被褥。你平常穿的衣服,春夏秋冬各季的,都要带,除非学校距你家乡很近或者父母亲有机会出差来学校给你带东西。内衣和袜子至少要两三套,各季的外衣至少也要两套。如果你现在生活的地方和要去上学的城市的地理气象与生活环境是否相似,那么准备的东西和在老家差不多;如果相差太大,就要带些那个城市需要的衣服(例如,如果你生活在北方,但上学的城市在南方,那么太厚的保暖内衣裤就可以不带了)。被褥也是这样,夏天去学校,可以带一床薄被(如毛巾被),厚被子可以自己带,也可以到学校后再买。席子可以到学校根据床宽购买合适的,床单和枕头(枕套)可以自己带也可以到学校再买。
5.洗漱生活用品。要带牙膏牙刷、毛巾、漱口杯、香皂肥皂、洗发水、梳子、手机(看家庭条件)等,以便在途中和到校后就能使用。男生要带剃须刀、女生要带各种女性用品和洗面奶等。至于洗脸盆、晒衣架、拖鞋、雨伞、水瓶、指甲剪、剪刀、小刀、台灯之类的东西就不一定要带了,有的学校会发,就算不发自己买也不贵(这些生活用品到了学校买也很方便,而且到时候和舍友一起去买还能快速缩短距离)。条件可以时,可以带个照相机,为自己和同学照照相,也是人际交流的一种很好方式。
6.学习用品。可以带几支水笔、本子、字典、词典(英汉汉英词典等,包括功能强大的电子词典)、书包(背包)。如果学校没有不允许,你家庭条件许可的话,可以带笔记本。但最好不要带,尤其是当你迷恋上网或者玩游戏的时候,带笔记本会影响你的学习和生活以及和同学的正常交往。另外,还可以预备一些生活中用到的药或创可贴之类,虽然不一定会用到它们,不过等需要的时候随手可以找到也很方便。
7.旅行箱。如果家庭条件不是特别好得钱花不了,不需要买太贵的,毕业后可以买更好的。箱子可以大一些,能装下自己的衣服及平常不是常用的生活用品和学习用品即可。但不要过分大,免得不好携带,到学校在宿舍也不好放。一般以80公分左右长、50-60公分宽为佳。
8. 如果可以的话,带点家乡的特产,不是一定要去给老师,而是给舍友或班上同学吃,毕竟你有四年的时间和他们在一起,越早熟悉越好。
10.如果坐火车的话,可以凭录取通知书(入学通知书)享受学生票优惠。
11.一点小建议:大学学习勇攀高峰,加入社团量力而行,大学社会实践多多益善,尊敬老师有难必问,同学相处宽容大度,大学恋爱不鼓励也不反对。
12.入学测试和体检。有的大学在新生报到后一段时间内,要组织几门文化课的新生入学测试,对考试成绩和高考成绩有较大出入者要进行重点核查。如果你考试没有作弊,不要有任何担心。考试范围和难度不会超过高考,考得好坏无所谓。体检也很容易过,除非你有不符合入学要求的重大疾病而且在高考体检时又使了花招,一般是不要紧的。只要你高考时正常体检、正常考试,这两项都没有问题,现在可以放心玩!
当然还有另一种入学考试,那是为各种分班做做准备的,比如英语成绩好的学生分到英语快班。
13.新生军训。大学新生要进行军训,军训一般只有两个星期。按照《国防教育法》的规定,组织学生进行军训,这是贯彻国防教育法的具体行动,是推进素质教育、为国家和军队培养造就高素质国防后备力量的重大举措。参加军训可以增进同学友情,应该积极参加。如果身体条件不许可,应该尽早跟辅导员或班主任讲清楚,以免发生意外。
14.宿舍是在你去之前就安排好的,这个不用担心。住宿条件有好有坏,不要太拘泥于这个,主要是要和同舍同学友好相处。不要以为住宿条件差就不能适应,人的适应性是非常强的,而且不太好的生活条件对你以后的成长和工作、生活很有好处,不管你的家庭是多么富有!
15.专业不理想,调换专业。一般学校进校一年后都可以调换专业。调换专业有两种情况,一种是因为在原专业很难学下去,学校会帮助你换一个好学一点的专业(但一般不是很好的专业,也不是热门专业);另一种是你想换一个你心仪的其它专业,这种时候一般都要由你要转入的专业所在院系进行资格考试,考试合格才能转入,有的学校还要交一笔费用。
‘伍’ 谁有 《数值计算方法 第三版》高等教育出版社 主编朱建新、李有法 课后答案以及 山西师范大学 的历年考题
主编朱建新、李有法课后答案以及山西师范大学的历年考题:
有限元法:有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式。
借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数 形式,便构成不同的有限元方法。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元 上的近似解构成。
(5)数值计算方法课后答案吕同富扩展阅读:
构造数值积分公式最通常的方法是用积分区间上的n 次插值多项式代替被积函数,由此导出的求积公式称为插值型求积公式。特别在节点分布等距的情形称为牛顿-柯茨公式,例如梯形公式与抛物线公式就是最基本的近似公式。但它们的精度较差。
龙贝格算法是在区间逐次分半过程中,对梯形公式的近似值进行加权平均获得准确程度较高的积分近似值的一种方法,它具有公式简练、计算结果准确、使用方便、稳定性好等优点,因此在等距情形宜采用龙贝格求积公式。
‘陆’ 求数值计算方法 第二版 课后答案 (丁丽娟 程杞元) PDF答案
我也想要啊。。。。。。
‘柒’ 求数值计算方法 第三版 李有法 朱建新 课后答案
数值计算方法如下:
1、有限元法:有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式。
借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数 形式,便构成不同的有限元方法。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元 上的近似解构成。
根据所采用的权函数和插值函数的不同 ,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合 同样构成不同的有限元计算格式。
2、多重网格方法:多重网格方法通过在疏密不同的网格层上进行迭代,以平滑不同频率的误差分量。具有收敛速度快,精度高等优点。
多重网格法基本原理微分方程的误差分量可以分为两大类,一类是频率变化较缓慢的低频分量;另一类是频率高,摆动快的高频分量。
一般的迭代方法可以迅速地将摆动误差衰减,但对那些低频分量,迭代法的效果不是很显着。高频分量和低频分量是相对的,与网格尺度有关,在细网格上被视为低频的分量,在粗网格上可能为高频分量。
多重网格方法作为一种快速计算方法,迭代求解由偏微分方程组离散以后组成的代数方程组,其基本原理在于一定的网格最容易消除波长与网格步长相对应的误差分量。
该方法采用不同尺度的网格,不同疏密的网格消除不同波长的误差分量,首先在细网格上采用迭代法,当收敛速度变缓慢时暗示误差已经光滑,则转移到较粗的网格上消除与该层网格上相对应的较易消除的那些误差分量,这样逐层进行下去直到消除各种误差分量,再逐层返回到细网格上。
3、有限差分方法:有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:
一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
4、有限体积法:有限体积法(Finite Volume Method)又称为控制体积法。其基本思路是:将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分方程对每一个控制体积积分,便得出一组离散方程。其中的未知数是网格点上的因变量的数值。
为了求出控制体积的积分,必须假定值在网格点之间的变化规律,即假设值的分段的分布的分布剖面。从积分区域的选取方法看来,有限体积法属于加权剩余法中的子区域法;从未知解的近似方法看来,有限体积法属于采用局部近似的离散方法。简言之,子区域法属于有限体积发的基本方法。
有限体积法的基本思路易于理解,并能得出直接的物理解释。离散方程的物理意义,就是因变量在有限大小的控制体积中的守恒原理,如同微分方程表示因变量在无限小的控 制体积中的守恒原理一样。
限体积法得出的离散方程,要求因变量的积分守恒对任意一组控制体积都得到满足,对整个计算区域,自然也得到满足。这是有限体积法吸引人的优点。有一些离散方法,例如有限差分法,仅当网格极其细密时,离散方程才满足积分守恒。
而有限体积法即使在粗网格情况下,也显示出准确的积分守恒。就离散方法而言,有限体积法可视作有限单元法和有限差分法的中间物。有限单元法必须假定值在网格点之间的变化规律(既插值函数),并将其作为近似解。
有限差分法只考虑网格点上的数值而不考虑值在网格点之间如何变化。有限体积法只寻求的结点值 ,这与有限差分法相类似;但有限体积法在寻求控制体积的积分时,必须假定值在网格点之间的分布,这又与有限单元法相类似。
在有限体积法中,插值函数只用于计算控制体积的积分,得出离散方程之后,便可忘掉插值函数;如果需要的话,可以对微分方程 中不同的项采取不同的插值函数。
5、近似求解的误差估计方法:近似求解的误差估计方法共有三大类:单元余量法,通量投射法及外推法。
单元余量法广泛地用于以FEM离散的误差估计之中,它主要是估计精确算子的余量,而不是整套控制方程的全局误差。
这样就必须假定周围的单元误差并不相互耦合,误差计算采用逐节点算法进行。单元余量法的各种不同做法主要来自对单元误差方程的边界条件的不同处理办法。基于此,该方法能够有效处理局部的残余量,并能成功地用于网格优化程序。
通量投射法的基本原理来自一个很简单的事实:精确求解偏微分方程不可能有不连续的微分,而近似求解却可以存在微分的不连续,这样产生的误差即来自微分本身,即误差为系统的光滑求解与不光滑求解之差。该方法与单元余量法一样,对节点误差采用能量范数,故也能成功地用于网格优化程序。
单元余量法及通量投射法都局限于局部的误差计算(采用能量范数),误差方程的全局特性没有考虑。另外计算的可行性(指误差估计方程的计算时间应小于近似求解计算时间)不能在这两种方法中体现,因为获得的误差方程数量,阶数与流场控制方程相同。
外推是指采用后向数值误差估计思想由精确解推出近似解的误差值。各类文献中较多地采用Richardson外推方法来估计截断误差。无论是低阶还是高阶格式,随着网格的加密数值计算结果都会趋近于准确解。但由于计算机内存与计算时间的限制,实际上不能采用这种网格无限加密的办法。
6、多尺度计算方法:近年来发展的多尺度计算方法包括均匀化方法、非均匀化多尺度方法、以及小波数值均匀化方法、多尺度有限体积法、多尺度有限元法等。
该方法通过对单胞问题的求解,把细观尺度的信息映射到宏观尺度上,从而推导出宏观尺度上的均匀化等式,即可在宏观尺度上求解原问题。均匀化方法在很多科学和工程应用中取得了巨大成功,但这种方法建立在系数细观结构周期性假设的基础上,因此应用范围受到了很大限制。
鄂维南等提出的非均匀化多尺度方法,是构造多尺度计算方法的一般框架。该方法有两个重要的组成部分:基于宏观变量的整体宏观格式和由微观模型来估计缺少的宏观数据,多尺度问题的解通过这两部分共同得到。
该方法基于多分辨分析,在细尺度上建立原方程的离散算子,然后对离散算子进行小波变换,得到了大尺度上的数值均匀化算子。此方法在大尺度上解方程,大大地减小了计算时间。
该法在宏观尺度上进行网格剖分,然后通过在每个单元里求解细观尺度的方程(构造线性或者振荡的边界条件)来获得基函数。从而把细观尺度的信息反应到有限元法的基函数里,使宏观尺度的解包含了细观尺度的信息。但多尺度有限元方法在构造基函数时需要较大的计算量。
借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数 形式,便构成不同的有限元方法。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元 上的近似解构成。
根据所采用的权函数和插值函数的不同 ,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合 同样构成不同的有限元计算格式。
2、多重网格方法:多重网格方法通过在疏密不同的网格层上进行迭代,以平滑不同频率的误差分量。具有收敛速度快,精度高等优点。
多重网格法基本原理微分方程的误差分量可以分为两大类,一类是频率变化较缓慢的低频分量;另一类是频率高,摆动快的高频分量。
一般的迭代方法可以迅速地将摆动误差衰减,但对那些低频分量,迭代法的效果不是很显着。高频分量和低频分量是相对的,与网格尺度有关,在细网格上被视为低频的分量,在粗网格上可能为高频分量。
多重网格方法作为一种快速计算方法,迭代求解由偏微分方程组离散以后组成的代数方程组,其基本原理在于一定的网格最容易消除波长与网格步长相对应的误差分量。
该方法采用不同尺度的网格,不同疏密的网格消除不同波长的误差分量,首先在细网格上采用迭代法,当收敛速度变缓慢时暗示误差已经光滑,则转移到较粗的网格上消除与该层网格上相对应的较易消除的那些误差分量,这样逐层进行下去直到消除各种误差分量,再逐层返回到细网格上。
3、有限差分方法:有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:
一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
4、有限体积法:有限体积法(Finite Volume Method)又称为控制体积法。其基本思路是:将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分方程对每一个控制体积积分,便得出一组离散方程。其中的未知数是网格点上的因变量的数值。
为了求出控制体积的积分,必须假定值在网格点之间的变化规律,即假设值的分段的分布的分布剖面。从积分区域的选取方法看来,有限体积法属于加权剩余法中的子区域法;从未知解的近似方法看来,有限体积法属于采用局部近似的离散方法。简言之,子区域法属于有限体积发的基本方法。
有限体积法的基本思路易于理解,并能得出直接的物理解释。离散方程的物理意义,就是因变量在有限大小的控制体积中的守恒原理,如同微分方程表示因变量在无限小的控 制体积中的守恒原理一样。
限体积法得出的离散方程,要求因变量的积分守恒对任意一组控制体积都得到满足,对整个计算区域,自然也得到满足。这是有限体积法吸引人的优点。有一些离散方法,例如有限差分法,仅当网格极其细密时,离散方程才满足积分守恒。
而有限体积法即使在粗网格情况下,也显示出准确的积分守恒。就离散方法而言,有限体积法可视作有限单元法和有限差分法的中间物。有限单元法必须假定值在网格点之间的变化规律(既插值函数),并将其作为近似解。
有限差分法只考虑网格点上的数值而不考虑值在网格点之间如何变化。有限体积法只寻求的结点值 ,这与有限差分法相类似;但有限体积法在寻求控制体积的积分时,必须假定值在网格点之间的分布,这又与有限单元法相类似。
在有限体积法中,插值函数只用于计算控制体积的积分,得出离散方程之后,便可忘掉插值函数;如果需要的话,可以对微分方程 中不同的项采取不同的插值函数。
5、近似求解的误差估计方法:近似求解的误差估计方法共有三大类:单元余量法,通量投射法及外推法。
单元余量法广泛地用于以FEM离散的误差估计之中,它主要是估计精确算子的余量,而不是整套控制方程的全局误差。
这样就必须假定周围的单元误差并不相互耦合,误差计算采用逐节点算法进行。单元余量法的各种不同做法主要来自对单元误差方程的边界条件的不同处理办法。基于此,该方法能够有效处理局部的残余量,并能成功地用于网格优化程序。
通量投射法的基本原理来自一个很简单的事实:精确求解偏微分方程不可能有不连续的微分,而近似求解却可以存在微分的不连续,这样产生的误差即来自微分本身,即误差为系统的光滑求解与不光滑求解之差。该方法与单元余量法一样,对节点误差采用能量范数,故也能成功地用于网格优化程序。
单元余量法及通量投射法都局限于局部的误差计算(采用能量范数),误差方程的全局特性没有考虑。另外计算的可行性(指误差估计方程的计算时间应小于近似求解计算时间)不能在这两种方法中体现,因为获得的误差方程数量,阶数与流场控制方程相同。
外推是指采用后向数值误差估计思想由精确解推出近似解的误差值。各类文献中较多地采用Richardson外推方法来估计截断误差。无论是低阶还是高阶格式,随着网格的加密数值计算结果都会趋近于准确解。但由于计算机内存与计算时间的限制,实际上不能采用这种网格无限加密的办法。
6、多尺度计算方法:近年来发展的多尺度计算方法包括均匀化方法、非均匀化多尺度方法、以及小波数值均匀化方法、多尺度有限体积法、多尺度有限元法等。
该方法通过对单胞问题的求解,把细观尺度的信息映射到宏观尺度上,从而推导出宏观尺度上的均匀化等式,即可在宏观尺度上求解原问题。均匀化方法在很多科学和工程应用中取得了巨大成功,但这种方法建立在系数细观结构周期性假设的基础上,因此应用范围受到了很大限制。
鄂维南等提出的非均匀化多尺度方法,是构造多尺度计算方法的一般框架。该方法有两个重要的组成部分:基于宏观变量的整体宏观格式和由微观模型来估计缺少的宏观数据,多尺度问题的解通过这两部分共同得到。
该方法基于多分辨分析,在细尺度上建立原方程的离散算子,然后对离散算子进行小波变换,得到了大尺度上的数值均匀化算子。此方法在大尺度上解方程,大大地减小了计算时间。
该法在宏观尺度上进行网格剖分,然后通过在每个单元里求解细观尺度的方程(构造线性或者振荡的边界条件)来获得基函数。从而把细观尺度的信息反应到有限元法的基函数里,使宏观尺度的解包含了细观尺度的信息。但多尺度有限元方法在构造基函数时需要较大的计算量。
‘捌’ 数值计算方法 第三版 (李有法 着)答案 或者是第二版的,需要详细答案
我有马昌凤(MATLAB)版的