① 谁能详细讲解一下线性代数求n阶行列式公式的含义及用法
n阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法.介绍几种常用的方法
1.利用行列式定义直接计算
2.利用行列式的性质计算
3.化为三角形行列式
若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积.因此化三角形是行列式计算中的一个重要方法.
4.降阶法
降阶法是按某一行(或一列)展开行列式,这样可以降低一阶,更一般地是用拉普拉斯定理,这样可以降低多阶,为了使运算更加简便,往往是先利用列式的性质化简,使行列式中有较多的零出现,然后再展开.
.
5.逆推公式法
逆推公式法:对n阶行列式Dn找出Dn与Dn-1或Dn与Dn-1,Dn-2之间的一种关系——称为逆推公式(其中Dn,Dn-1,Dn-2等结构相同),再由递推公式求出Dn的方法称为递推公式法.
② 用两种方法计算n阶行列式,除了我写的,还有什么方法
如果是n阶文字行列式的话不要指望有什么统一的好办法来求出简单的结果,因为结果可能本身就很复杂纯数字的n阶行列式可以用Gauss消去法来算(当然连“n”都得是具体的,比如n=20),如果不会Gauss消去法,去看下面的链接
③ 计算n阶行列式的技巧和方法、思路,求教!!!
使用代数余子式来计算,选取矩阵的一行,分别用该行的各个元素乘以相应的代数余子式,再求之和即可。
代数余子式是出去该元素所在行、列的元素后剩下的元素组成的矩阵的行列式再乘以一个符号
(-1)^(i+j),i,j是该元素所在的行与列数。
例如:
|1
2
3|
|4
5
6|=1*|5
6
|+(-1)*2*|4
6|+3*|
4
5|
|7
8
9|
|8
9
|
|7
9|
|7
8|
=
1*(5*9-6*8)+(-1)*2*(4*9-6*7)+3*(4*8-5*7)
=
-3+2*14-3*3
=
16
。
④ n阶行列式,主对角线为a 其余全为b怎么计算
根据行列式的性质可以如下计算:
基本方法是加到同一行或同一列,之后提取出来,再利用降阶或者是性质计算。
各列加到第一列上,再把第一行乘-1加到各行上,就化成了上三角行列式。
n阶行列式的性质
性质1:行列式和它的转置行列式的值相同。
性质2:交换一个行列式的两行(或两列)行列式值改变符号。
性质3:如果一个行列式的两行(或两列)完全相同,那么这个行列式的值等于零。
性质4:把一个行列式的某一行(或某一列)的所有元素同乘以某一个常数k的结果等于用这个常数k乘这个行列式。
推论1:一个行列式的某一行(或某一列)的所有元素的公因式可以提到行列式符号的前面。
推论2:如果一个行列式的某一行(或某一列)的所有元素都为零,那么行列式值等于零。
推论3:如果一个行列式的某二行(或某二列)的对应元素成比例,那么行列式值等于零。
性质5:如果行列式D的某一行(或某一列)的所有元素都可以表成两项的和,那么行列式D等于两个行列式D1和D2的和。
性质6:把行列式的某一行(或某一列)的元素乘同一个数后,加到另一行(或另一列)的对应元素上,行列式值不变。
⑤ n阶行列式怎么求
这个足以写篇论文了
2,3阶行列式的对角线法则, 4阶以上(含4阶)是没有对角线法则的!
解高阶行列式的方法 一般有
用性质化上(下)三角形,上(下)斜三角形, 箭形
按行列展开定理
Laplace展开定理
加边法
递归关系法
归纳法
特殊行列式(如Vandermonde行列式)
化箭形
特征值法
等等
⑥ 行列式的计算方法
行列式的计算方法如下:
1、逆推法:逆推法主要是建立起来两个行列式之间的一个递推关系式,将整个式子逐步的推下去,从而可以求出来一个具体的值。
2、范德蒙行列式:范德蒙行列式的用法主要是将一些行列式的特点找到变形的一些地方,将我们需要求的一个行列式化成一个已知的或者是简单的形式,而这一种解题方法我们就叫做范德蒙行列式,这也是一种最为常见最为常用到的解题方法。
行列式的性质
1、单位矩阵的行列式为 1 ,与之对应的是单位立方体的体积是 1。
2、行列式的某一行(列)中所有的元素都乘以同一数k,等于用数k乘此行列式。
3、在消元的过程中,行列式不会改变,如果有行交换的话,符号不同。
⑦ 行列式的计算方法总结
第一、行列式的计算利用的是行列式的性质,而行列式的本质是一个数字,所以行列式的变化都是建立在已有性质的基础上的等量变化,改变的是行列式的“外观”。
第二、行列式的计算的一个基本思路就是通过行列式的性质把一个普通的行列式变化成为一个我们可以口算的行列式(比如,上三角,下三角,对角型,反对角,两行成比例等)
第三、行列式的计算最重要的两个性质:
(1)对换行列式中两行(列)位置,行列式反号
(2)把行列式的某一行(列)的倍数加到另一行(列),行列式不变
对于(1)主要注意:每一次交换都会出一个负号;换行(列)的主要目的就是调整0的位置,例如下题,只要调整一下第一行的位置,就能变成下三角。
矩阵的加法与减法运算将接收两个矩阵作为输入,并输出一个新的矩阵。矩阵的加法和减法都是在分量级别上进行的,因此要进行加减的矩阵必须有着相同的维数。
为了避免重复编写加减法的代码,先创建一个可以接收运算函数的方法,这个方法将对两个矩阵的分量分别执行传入的某种运算。
⑧ n阶行列式的计算方法(带例题)
使用代数余子式来计算,选取矩阵的一行,分别用该行的各个元素乘以相应的代数余子式,再求之和即可。
代数余子式是出去该元素所在行、列的元素后剩下的元素组成的矩阵的行列式再乘以一个符号 (-1)^(i+j),i,j是该元素所在的行与列数。
例如:
|1 2 3|
|4 5 6|=1*|5 6 |+(-1)*2*|4 6|+3*| 4 5|
|7 8 9| |8 9 | |7 9| |7 8|
= 1*(5*9-6*8)+(-1)*2*(4*9-6*7)+3*(4*8-5*7)
= -3+2*14-3*3 = 16 。