A. 两点坐标距离公式是什么
两点坐标距离公式是“√((x1-x2)^2+(y1-y2)^2)”。
两点间距离公式叙述了点和点之间距离的关系。两点的坐标是(x1,y1)和(x2,y2),则两点之间的距离公式为 d=√((x1-x2)^2+(y1-y2)^2)。两点间距离公式常用于函数图形内求两点之间距离、求点的坐标的基本公式,是距离公式之一。
两点距离公式推导:
已知AB两点坐标为A(x1,y1),B(x2,y2)。
过A做一直线与X轴平行,过B做一直线与Y轴平行,两直线交点为C。则AC垂直于BC(因为X轴垂直于Y轴),则三角形ACB为直角三角形。
由勾股定理得AB^2=AC^2+BC^2,故AB=根号下AC^2+BC^2,即两点间距离公式。点到直线的距离:直线Ax+By+C=0 坐标(x0,y0)那么这点到这直线的距离就为:d=│Ax0+By0+C│/根号(A^2+B^2)。
B. 坐标轴上两点间距离公式是什么
1、平面内
设两个点A、B以及坐标分别为 :
2、空间内
设A(x1,y1,z1),B(x2,y2,z2)
|AB|=√[(x2-x1)^2+(y2-y1)^2+(z2-z1)^2]
两点间距离公式常用于函数图形内求两点之间距离、求点的坐标的基本公式,是距离公式之一。两点间距离公式叙述了点和点之间距离的关系。
(2)坐标系中两点距离的计算方法扩展阅读
应用:
已知点A(-2,4),点B(1,2),点C在y轴上,如果△ABC是直角三角形,求点C的坐标。
分析:直角三角形,关键谁是直角,也就是讨论AB,AC,BC谁是斜边的问题.
解:设C(0,y), AB是斜边,则有BC²+AC²=AB²
即:4+(4-y)²+1+(2-y)²=13
将方程的根求解出来即可。
AC是斜边,则有BC²+AB²=AC²;BC是斜边,则有AC²+AB²=BC²
C. 求 坐标系中两点间的距离
有两点间距离公式:
设p1(x1,y1)、p2(x2,y2),
则∣p1p2∣=√[(x1-x2)^2+(y1-y2)^2]=√(1+k2)∣x1-x2∣,
或者∣p1p2∣=∣x1-x2∣secα=∣y1-y2∣/sinα,
其中α为直线p1p2的倾斜角,k为直线p1p2的斜率。
D. 两个坐标点的距离怎样算
两点距离公式两点间距离公式- 公式名称两点间距离公式
AB=√((x1-x2)^2+(y1-y2)^2)
公式简介设P1(x1,y1)、P2(x2,y2),
则∣P1 P2∣=√[(x1- x2)2+(y1- y2)2]= √(1+k2) ∣x1 -x2∣,
或者∣P1 P2∣=∣x1 -x2∣secα=∣y1 -y2∣/sinα,
其中α为直线P1 P2的倾斜角,k为直线P1 P2的斜率
E. 知道两点坐标,怎么算两点之间距离.
可以使用两点间距离公式来求:设两个点A、B以及坐标分别为x1,y1、x2,y2,则A和B两点之间的距离为:
两点间距离公式常用于函数图形内求两点之间距离、求点的坐标的基本公式,是距离公式之一。两点间距离公式叙述了点和点之间距离的关系。
(5)坐标系中两点距离的计算方法扩展阅读
两点之间距离公式推导过程
已知AB两点坐标为A(x1,y1) B(x2,y2)。
过A做一直线与X轴平行,过B做一直线与Y轴平行,两直线交点为C。
则AC垂直于BC(因为X轴垂直于Y轴)
则三角形ACB为直角三角形
由勾股定理得
AB^2=AC^2+BC^2
故AB=根号下AC^2+BC^2,即两点间距离公式 。
F. 直角坐标系中两点之间的距离公式是什么
平面直角坐标系中设A(x1,y1),B(x2,y2)是平面直角坐标系中的两个点,则A与B之间的距离公式为:S=√(〈x2-x1)^2+(y2-y1)^2)。
当A或B等于0时,经容易验证上述公式仍然成立。此即为直线外任意一点到直线的通用距离公式。证明思想是求出垂线所在的直线方程,进而求出交点D的坐标,利用两点之间的坐标公式即可求出点到直线的距离。
平面和直线是空间直角坐标系下最简单也是最重要的点的轨迹.以向量为工具,建立平面和直线的方程,以此来研究直线和平面的相关问题,是重要的方法之一。
空间直角坐标系下直线和平面的问题中经常用到的一些方法,比如解平面束方程的方法、点落在直线上的参数表示法、两向量垂直则这两个向量的数量积为零等等。
G. 两点距离公式是什么
两点间距离公式是∣AB∣=√[(x1-x2)²+(y1-y2)²]。
两点间距离公式叙述了点和点之间距离的关系。设两个点A、B以及坐标分别为 :A(X1,Y1)、B(X2,Y2)则A和B两点之间的距离为:∣AB∣=√[(x1-x2)²+(y1-y2)²]。两点距离公式是常用于函数图形内求两点之间距离、求点的坐标的基本公式,是距离公式之一。
(7)坐标系中两点距离的计算方法扩展阅读:
通过两点间距离公式可以进一步推出点到直线距离。
假设点P(x₀,y₀)到直线l:Ax+By+C=0的距离是点P到直线l的垂线段的长,设点P到直线的垂线为l',垂足为Q,则l'的斜率为B/A则l'的解析式为y-y₀=(B/A)(x-x₀)。把l和l'联立得l与l'的交点Q的坐标为((B^2x₀-ABy₀-AC)/(A^2+B^2), (A^2y₀-ABx₀-BC)/(A^2+B^2))。
PQ^2=[(B^2x₀-ABy₀-AC)/(A^2+B^2)-x0]^2
+[(A^2y₀-ABx₀-BC)/(A^2+B^2)-y0]^2
=[(-A^2x₀-ABy₀-AC)/(A^2+B^2)]^2
+[(-ABx₀-B^2y₀-BC)/(A^2+B^2)]^2
=[A(-By₀-C-Ax₀)/(A^2+B^2)]^2
+[B(-Ax₀-C-By₀)/(A^2+B^2)]^2
=(A^2+B^2)(Ax₀+By₀+C)^2/(A^2+B^2)^2
=(Ax₀+By₀+C)^2/(A^2+B^2)
所以PQ=|Ax+By+C|/√(A^2+B^2),公式得证。