导航:首页 > 计算方法 > 归纳计算方法

归纳计算方法

发布时间:2022-08-01 14:51:10

① 数学归纳法的主要解题步骤是什么要详解。

(1)先证明当n取第一个值n。时,命题正确
(2)假设当n=k(k是正整数且k〉=n。)时,命题正确,证明当n=k+1时命题也正确
在完成了这两个步骤以后,就可以断定命题对于从n。开始的所有自然数n都正确

② 初中的数学归纳法是什么,有哪些题型

数学上证明与自然数N有关的命题的一种特殊方法,它主要用来研究与正整数有关的数学问题,在高中数学中常用来证明等式成立和数列通项公式成立。

数学归纳法填空题
1、用数学归纳法证明“(3n+1)7n-1能被9整除(nÎN)”的第二步应为________。
2、用数学归纳法证明等式“1+2+3+…+(n+3)=(nN)”,
当n=1时,左边应为____________。
3、已知{an}数列的前n项Sn=2n-an,则{an}的前四项依次为_______,猜想an=__________.
4、用数学归纳法证明某个命题时,左式为(n为正偶数)从”n=2k到n=2k+2”, 左边需增加的代数式是_____。
5、用数学归纳法证明1+2+3+…+(2n+1)=(n+1)(2n+1)时,从“n=k到n=k+1”, 左边需增添的代数式是_____。
6、用数学归纳法证明1+2+3+…+n=(nÎN)的第二步应是;假设_______时等式成立,即_____________,那么当_________时,左边=1+2+…+_______=(1+2+…+_______)+_________=_______+_______=_________,右边=__________,故左边________右边,这就是说____________________。
7、已知数列{an}, a为常数且an=,Sn=a1+a2+…+an ,则S1 , S2 ,S3分别为___________,推测Sn的计算公式为_______.
8、用数学归纳法证明等式时,当n=1左边所得的项是 ;从””需增添的项是 。
9、用数学归纳法证明当时是31的倍数时,当n=1时原式为 ,从时需增添的项是 。
10、
用数学归纳法证明“当n³2且nÎN时,xn-nan-1x+(n-1)an能被(x-a)2整除”的第一步应为_________________。
11、已知数列{an}满足a1=2a,an=2a-(n³2),用数学归纳法证明an=a的第一步是___________________。
12、用数学归纳法证明等式1·3·5+3·5·7+···+(2n-1)(2n+1)(2n+3)=n(n+2)·(2n2+4n-1)时,先算出n=1时,左边=_______,右边=__________,等式成立。
13、在数列{an}中,Sn是其前n项和,且Sn=2an-2,,则此数列的四项分别为_______.猜想an的计算公式是_______.
14、用数学归纳法证明“当n是非负整数时55n+1+45n+2+35n能被11整除”的第一步应写成:当n=______时,55n+1+45n+2+35n=________=_______,能被11整除。
15、用数学归纳法证明1+3+6+……+=(nÎN)的第一步应是:当n=_____时,左边=____,右边=_____,∴左边_____右边,故_____。
16、用数学归纳法证明“56n+5+76n+7能被9整除”的第二步中,为了使用归纳假设,应将56(k+1)+5+76(k+1)+7变形为__________________。
17、设凸k边形的内角和为f(k),则凸k+1边形的内角和f(k+1)=f(k)+______.
18、已知数列{an}, a1=, 则a2, a3 , a4 ,a5分别为_________,猜想an=________.
19、探索表达式A=(n-1)n-1)!+(n-2)(n-2)!+…+2·2!+1·1! (n>1且n∈N)的结果时,第一步n=___________时,A=__________.
20、用数学归纳法证明某个命题时,左式为1·2·3·4+2·3·4·5+n(n+1)(n+2)(n+3), 从 “n=k到n=k+1”,左边需增加的代数式是____。
21、用数学归纳法证明某命题时,若命题的左边是1++++…+(nÎN),则n=k+1时,左边应是n=k时的左边加上______________。
2、用数学归纳法证明1+2+22+23+……+25n-1(nÎN)是31的倍数时,从“n=k®n=k+1”需添的项是___________。
23、设Sk=,那么Sk+1=Sk+_____
24、记平面内每两条棱交于两点,且任何三条不共点的几条抛物线,将平面划分的Z区域个数为f(n),则f(k+1)=f(k)+____。
25、直线l上有k个点(k³2),由k个点确定的线段条数记为f(k),则l上增加一个点后,线段条数最多增加_______条。
26、平面上原有k个圆,它们的交点个数记为f(k),则增加第k+1个圆后,交点个数最多增加_______个。
27、平面上原有k个圆,它们相交所成圆弧共有f(k)段,则增加第k+1个与前k个圆均有两个交点,且不过前k个圆的交点的圆,则前k个圆的圆弧增加_________段。
28、设有通过一点的k个平面, 其中任何三个或三个以上的平面不共有一条直线,这k个平面将空间分成个f(k)部分,则k+1个平面将空间分成f(k+1)=f(k)+_____个部分.
29、平面内原有k条直线,这k条直线没有两条互相平行,没有三条交于同一点,它们互相分割成f(k)条线段或射线,则增加一条这样的直线,被分割的线段或射线增加________条。
30、平面上两两相交且任何三条不过同一点的k条直线将平面分面f(k)个部分,则k+1条直线把平面分成为f(k+1)=f(k)+_____个部分
31、已知凸k边形的内角和为f(k),则凸k+1边形的内角和f(k+1)与f(k)的关系是f(k+1)=____________。
32、设数列{an}满足a1=2,an+1=2an+2,用数学归纳法证明an=4·2n-1-2的第二步中,设n=k时结论成立,即ak=4·2k-1-2,那么当n=k+1时,___________。
数学归纳法填空题 〈答案〉

1、 答案:略。

2、 1+2+3+4
3、 1,
4、
5、 (2k+2)(2k+3)
6、 答案:略。
7、
8、 1+2+3;(2k+2)+(2k+3)
9、 1+2+22+23+24;25k+25k+1+25k+2+25k+3+25k+4.
10、 当n=2时,xn-nan-1x+(n-1)an=x2-2ax+a2=(x-a)2能被(x-a)2整除
11、 a2=2a-=2a-=a=
12、 1·3·5=15;1·3·(2+4-1)=15
13、 2,4,8,16;2n
14、 0,51+42+30,22
15、 1,1,1,=,成立
16、 76(56k+5+76k+7)+(56-76)·56k+5
17、 π
18、
19、2,1
20、 (k+1)(k+2)(k+3)(k+4)
21、 +++…+
22、 25k+25k+1+…+25k+4
23、
24、 2k+1
25、 k
26、 2k
27、 2k
28、 2k
29、 2k+1
30、 k+1
31、 f(k)+
32、 ak+1=2ak+2=2(4·2k-1-2)+2=4·2k-2=4·2(k+1)-1-2
例1 求证:多项式xn+1+(x+1)2n-1(n∈N)能被多项式x2+x+1整除.

分析:与自然数有关的命题,常用数学归纳法证明,但在用

数学归纳法证明整除性问题时,为了凑假设,常需对n=k+1的情形进行添项和拆项.

证明:(1)当n=1时,x2+(x+1)显然能被x2+x+1整除.

例2 用数学归纳法证明:

评注:通常用数学归纳法证明关于含有自然数n的命题时,第一步只要检验n=1(或n=2,…)就可以了.本题在检验n=1不等式成立后,又继而检验n=2时,不等式也成立,这一做法不是多余的,因为后面的证明中要用到

例3 已知n个平面都过同一点,但其中任何三个平面都不经过同一直线,求证:这n个平面把空间分成f(n)=n(n-1)+2部分.

证明:(1)当n=1时,1个平面把空间分为2部分,而f(1)=1×(1-1)+2=2(部分),所以命题正确.

(2)假设当n=k时,命题成立,即k个符合条件的平面把空间分为f(k)=k(k-1)+2(部分),

当n=k+1时,第k+1个平面和其它每一个平面相交,使其所分成的空间都增加2部分,所以共增加2k部分.

∴f(k+1)=f(k)+2k=k(k-1)+2+2k

=k(k-1+2)+2=(k+1)[(k+1)-1]+2(部分),

即n=k+1时,命题成立.

根据(1)、(2)知,n个符合条件的平面把空间分成f(n)=n(n-1)+2部分.

③ 请归纳小学数学简便计算的几种方法

对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?

由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.

④ 计算归纳是什么

统计学按照发展阶段和侧重点不同,可分为描述统计学和归纳统计学,归纳统计学又称推断统计学。描述统计学是阐述如何对客观现象的数量表现进行计量、搜集、整理、表示、一般分析与解释的一系列统计方法。其内容包括统计指标、统计调查、统计整理、统计图表、集中趋势测度、离散程度测度、统计指数、时间数列常规分析等理论和方法。归纳统计学主要阐述如何根据部分数据(样本统计量)去推论总体的数量特征及规律性的一系列理论和方法,其主要内容包括概率与概率分布、参数估计、假设检验、抽样调查、方差分析、相关与回归分析、统计预测、统计决策等。归纳统计是借助抽样调查,从局部推断总体,以对不肯定的事物做出决策的一种统计。有总体参数估计与假设检验两种。前者以一次性抽样实验为依据,对整个总体的某个数字特征做出估计。后者则是对某种假设进行检验,根据计算结果推断所做的假设是否可以接受。如平均数、标准差、相关系数、回归系数等特征的总体估计及差异显着性检验。归纳统计的理论基础是概率论,它更多地需要借助抽样理论与方法[1]
。一般来说,描述统计学是归纳统计学的基础,归纳统计学是描述统计学的拓展,是现代统计学的核心。

⑤ 小数除以整数的计算方法归纳

小数除以整数的计算方法:按照整数除法的方法除,商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点继续除;如果除到被除数的末尾仍有余数,就在余数末尾添0,再继续除。

⑥ 数学简便计算,有哪几种方法

数学简便计算方法:

一、运用乘法分配律简便计算

简便计算中最常用的方法是乘法分配律。乘法分配律指的是:

ax(b+c)=axb+axc

cx(a-b)=axc-bxc

例1:38X101,我们要怎么拆呢?看谁更加的靠近整百或者整十,当然是101更好些,那我们就把101拆成100+1即可。

38X101

=38X(100+1)

=38X100+38X1

=3800+38

=3838

例2:47X98,这样该怎么拆呢?要拆98,使它更接近100。

47X98

=47X(100-2)

=47X100-47X2

=4700-94

=4606

二、基准数法

在一系列数中找出一个比较折中的数来代表全部的数,要记得这个数的选取不能偏离这一系列数。

例:

2072+2052+2062+2042+2083

=(2062x5)+10-10-20+21

=10310+1

=10311

三、加法结合律法

对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。

例:

5.76+13.67+4.24+6.33

=(5.76+4.24)+(13.67+6.33)

=30

四、拆分法

顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改变数的大小哦!

例:

3.2×12.5×25

=8×0.4×12.5×25

=8×12.5×0.4×25

=1000

五、提取公因式法

这个方法实际上是运用了乘法分配律,将相同因数提取出来。

例:

0.92×1.41+0.92×8.59

=0.92×(1.41+8.59)

=9.2

⑦ 高中阶段化学计算的方法归纳

高中化学计算所有问题归纳集

[命题趋向]
1.高考化学试题中的计算题主要分成两类:一类是以选择题形式出现的小计算题,主要跟基本概念的理解水平,可以推理估算、范围测算等;第二类是以大题出现的综合计算题,一般都是跟元素化合物、化学实验、有机化合物基础知识相联系起来的综合问题。
2.从《2009年普通高考考试大纲》分析,化学计算主要也可以分成两类:一类是有关物质的量、物质溶解度、溶液浓度、pH、燃烧热等基本概念的计算;另一类是常见元素的单质及其重要化合物、有机化学基础、化学实验等知识内容中,具有计算因素的各类问题的综合应用。
3.理科综合能力中对用数学知识处理化学计算等方面的问题提出了具体的要求,往年高考试题也已经出现过这类试题,后阶段复习中要加以重视。

[知识体系和复习技巧重点]

1.各种基本概念计算之间的联系

2.化学计算常用方法

守恒法 利用反应体系中变化前后,某些物理量在始、终态时不发生变化的规律列式计算。主要有:(1)质量守恒;(2)原子个数守恒;(3)电荷守恒;(4)电子守恒;(5)浓度守恒(如饱和溶液中);(6)体积守恒;(7)溶质守恒;(8)能量守恒。

差量法 根据物质发生化学反应的方程式,找出反应物与生成物中某化学量从始态到终态的差量(标准差)和实际发生化学反应差值(实际差)进行计算。主要有:(1)质量差;(2)气体体积差;(3)物质的量差;(4)溶解度差……实际计算中灵活选用不同的差量来建立计算式,会使计算过程简约化。

平均值法 这是处理混合物中常用的一种方法。当两种或两种以上的物质混合时,不论以何种比例混合,总存在某些方面的一个平均值,其平均值必定介于相关的最大值和最小值之间。只要抓住这个特征,就可使计算过程简洁化。主要有:(1)平均相对分子质量法;(2)平均体积法;(3)平均质量分数法;(4)平均分子组成法;(5)平均摩尔电子质量法;(6)平均密度法;(7)平均浓度法……

关系式法 对于多步反应体系,可找出起始物质和最终求解物质之间的定量关系,直接列出比例式进行计算,可避开繁琐的中间计算过程。具体有:(1)多步反应关系法:对没有副反应的多步连续反应,可利用开始与最后某一元素来变建立关系式解题。(2)循环反应关系法:可将几个循环反应加和,消去其中某些中间产物,建立一个总的化学方程式,据此总的化学方程式列关系式解题。

十字交叉法 实际上是一种数学方法的演变,即为a1x1+a2x2=a平×(x1+x2)的变式,也可以转化为线段法进行分析。(1)浓度十字交叉法;(2)相对分子质量十字交叉法等。

极值法 当两种或多种物质混合无法确定其成分及其含量时,可对数据推向极端进行计算或分析,假设混合物质量全部为其中的某一成分,虽然极端往往不可能存在,但能使问题单一化,起到了出奇制胜的效果。常用于混合物与其他物质反应,化学平衡混合体系等计算。

讨论法 当化学计算中,不确定因素较多或不同情况下会出现多种答案时,就要结合不同的情况进行讨论。将不确定条件转化为已知条件,提出各种可能答案的前提,运用数学方法,在化学知识的范围内进行计算、讨论、推断,最后得出结果。主要有以下几种情况:(1)根据可能的不同结果进行讨论;(2)根据反应物相对量不同进行讨论;(3)运用不定方程或函数关系进行讨论。

估算法 有些化学计算题表面看来似乎需要进行计算,但稍加分析,不需要复杂计算就可以推理出正确的答案。快速简明且准确率高,适合于解某些计算型选择题。但要注意,这是一种特殊方法,适用范围不大。

3.基本概念、基本理论、元素化合物、有机化学基础、化学实验等各部分内容中都隐含许多计算因素问题,复习中要加以总结归类。如,有机化合物内容中的化学计算因素问题主要有:
(1)同系物通式的计算(通式思想的运用);
(2)同分异构体种数计算(空间想象、立体几何知识);
(3)有机化合物结构简式的确定(有机化合物性质跟所有化学基本计算的综合);
(4)有机物燃烧规律的计算(跟气体燃烧实验、气体吸收实验、气体干燥实验等的综合);
(5)有机反应转化率、产量的计算(跟工业生产实际的结合)。

⑧ 所有数学归纳法的步骤简介有哪些呢

格式如下:
∵①所假设的结论,对于第一项成立
②假设结论在第k项成立,
则当对n=k+1项时,…………
(利用n=k是结论成立,通过计算说明也成立)
∴由①②得,…结论成立

⑨ 归纳摩尔质量的计算方法

摩尔质量的计算方法:

(1)物质的量浓度就是单位体积内物质的摩尔数,公式:c=n/v,单位: mol/L

(2)气体摩尔体积就是1 摩尔气体在标准状况下的体积(标准状况的定义:温度为0 摄氏度,一个标准大气压)。所有气体在标准状况下的气体摩尔体积均为22.4L/mol 。

(3)摩尔质量即1 摩尔物质的质量,在数值上等于其相对分子质量,例如:O2 的摩尔质量为32g/mol 。

物质的量是国 际单位制中七个基本物理量之一用物质的量可以衡量组成该物质的基本单元(即微观粒子群)的数目的多少,符号n,单位摩尔(mol ),即一个微观粒子群为 1mol 。如果该物质有2 个微观粒子群, 那么该物质的物质的量为 2mol 。

对于物质的量,它只是把计量微观粒子的单位做了一下改变,即将“个”换成“群或堆”。看一定质量的物质中有几群或几堆微观粒子,当然群或堆的大小应该固定。现实生活中也有同样的例子,啤酒可以论“瓶” ,也可以论“打”,一打就是 12 瓶,这里的打就类似于上面的微观粒子群或微观粒子堆。

阅读全文

与归纳计算方法相关的资料

热点内容
系统思维的训练方法 浏览:41
组合数计算方法高中数学例题 浏览:305
如何用物理方法卷发 浏览:194
穿丝袜的正确方法视频教程 浏览:220
简单锻炼方法视频捂脸 浏览:274
如何唤醒孩子的方法 浏览:567
双开双控插座安装方法视频 浏览:704
gps手持测亩仪使用方法 浏览:152
有什么方法可以安眠 浏览:215
种大蒜的视频种植方法 浏览:172
什么样的方法能瘦下来 浏览:429
虫牙打洞治疗方法 浏览:889
糖尿病检测方法题 浏览:528
2012年汾酒鉴定方法及技巧 浏览:119
如何自己制作竹子的方法 浏览:854
面部混合痣的最佳治疗方法 浏览:361
中种发酵方法和技巧 浏览:407
中学生物教学方法ppt 浏览:985
怎么设置qq铃声设置方法 浏览:64
如何用最快的方法打气球 浏览:827